Effects of indigenous arbuscular mycorrhizal fungi in paddy fields on rice growth and N, P, K nutrition under different water regimes

1995 ◽  
Vol 41 (3) ◽  
pp. 505-514 ◽  
Author(s):  
Mohammad Zakaria Solaiman ◽  
Hiroshi Hirata
2014 ◽  
Vol 1073-1076 ◽  
pp. 628-631
Author(s):  
Fang Ma ◽  
Shu Juan Zhang ◽  
Li Wang ◽  
Dan Shan ◽  
Xiao Feng Jiang ◽  
...  

Soil respiration can be altered by changing substance supply, respiratory capacity and the demand for the products. We carried out a field experiment in the northeast of China to understand how inoculation with arbuscular mycorrhizal fungi (AMF) alters soil respiration in paddy fields. Soil respiration and factors contributing to it were measured for paddy fields either inoculated or non-inoculated with AMF, with or without fertilization. We found that inoculation increased soil respiration, net photosynthesis of rice leaves, N and P content of rice shoots and the abundance of actinomyces and fungi in rhizosphere; while the negative effect was only observed on root biomass. We also found that fertilization decreased the responses of soil respiration, root biomass and the abundance of bacteria and fungi in rhizosphere to inoculation. However, it decreased the responses of net photosynthesis, shoot biomass and shoot N and P content to inoculation. Conclusively, AMF inoculation promoted soil respiration by enhancing substrate supply, respiratory capacity and the demand for products; while the impacts of inoculation were weakened by fertilization via respiration capacity and the demand for the products.


2022 ◽  
Vol 951 (1) ◽  
pp. 012003
Author(s):  
L M H Kilowasid ◽  
R Ariansyah ◽  
L Afa ◽  
G A K Sutariati ◽  
Namriah ◽  
...  

Abstract Seaweed extract is known to contain nutrients and growth-regulating substances that affect soil biota, and a source of protection against pests and diseases. Earthworm, which is an example of a soil biota and playing the role of ecosystem engineer, has the ability to produce suitable land biostructures, for the inhabitation of arbuscular mycorrhizal fungi (AMF), which has an impact on upland rice growth. Therefore, this study aims to determine, (i) the effect of seaweed extract on the population of earthworms and spores of arbuscular mycorrhizal fungi, and (ii) the impact of the engineered soil on the growth of local upland rice varieties. Furthermore, the extract of seaweed, such as Kappapychus alvarezii, was divided into five concentration levels, namely 0%, 20%, 40%, 60%, and 80%. Each treatment was drenched into the soil from the cogongrass vegetated area, mixed with 20 Pheretima sp., and maintained for 49 days in the greenhouse. The result showed that the total difference in the earthworms’ concentration treatments was not significant. It also showed that the total AMF spores in the engineered soil products of 20% concentration was the highest. Based on treatment with the earthworm engineered soil products, the highest and lowest vegetative growth and yield components of upland rice were observed at the concentrations of 80% and 0%, respectively. In conclusion, the application of seaweed extract to the soil did not significantly reduce the earthworm population. The extract concentration of 20% also increased the total AMF spore in the engineered soil. Moreover, highly treated engineered soil products increased the growth and yield components of upland Kambowa rice on cogongrass soils.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yutao Wang ◽  
Xiaozhe Bao ◽  
Shaoshan Li

Arbuscular mycorrhizal fungi (AMF) are present in paddy fields, where they suffer from periodic soil flooding and sometimes shading stress, but their interaction with rice plants in these environments is not yet fully explained. Based on two greenhouse experiments, we examined rice-growth response to AMF under different flooding and/or shading regimes to survey the regulatory effects of flooding on the mycorrhizal responses of rice plants under different light conditions. AMF had positive or neutral effects on the growth and yields of both tested rice varieties under non-flooding conditions but suppressed them under all flooding and/or shading regimes, emphasizing the high importance of flooding and shading conditions in determining the mycorrhizal effects. Further analyses indicated that flooding and shading both reduced the AMF colonization and extraradical hyphal density (EHD), implying a possible reduction of carbon investment from rice to AMF. The expression profiles of mycorrhizal P pathway marker genes (GintPT and OsPT11) suggested the P delivery from AMF to rice roots under all flooding and shading conditions. Nevertheless, flooding and shading both decreased the mycorrhizal P benefit of rice plants, as indicated by the significant decrease of mycorrhizal P responses (MPRs), contributing to the negative mycorrhizal effects on rice production. The expression profiles of rice defense marker genes OsPR1 and OsPBZ1 suggested that regardless of mycorrhizal growth responses (MGRs), AMF colonization triggered the basal defense response, especially under shading conditions, implying the multifaceted functions of AMF symbiosis and their effects on rice performance. In conclusion, this study found that flooding and shading both modulated the outcome of AMF symbiosis for rice plants, partially by influencing the mycorrhizal P benefit. This finding has important implications for AMF application in rice production.


Sign in / Sign up

Export Citation Format

Share Document