scholarly journals Relative importance of protons and solution calcium concentration in phosphate rock dissolution by organic acids

1998 ◽  
Vol 44 (4) ◽  
pp. 617-625 ◽  
Author(s):  
Charles I. Sagoe ◽  
Tadao Ando ◽  
Kenji Kouno ◽  
Toshinori Nagaoka
1996 ◽  
Vol 60 (6) ◽  
pp. 1589-1595 ◽  
Author(s):  
Z. L. He ◽  
V. C. Baligar ◽  
K. D. Ritchey ◽  
D. C. Martens ◽  
W. D. Kemper

1996 ◽  
Vol 60 (5) ◽  
pp. 1589-1595 ◽  
Author(s):  
Z. L. He ◽  
V. C. Baligar ◽  
K. D. Ritchey ◽  
D. C. Martens ◽  
W. D. Kemper

1991 ◽  
Vol 28 (1) ◽  
pp. 85-93 ◽  
Author(s):  
S. S. S. Rajan ◽  
R. L. Fox ◽  
W. M. H. Saunders ◽  
M. Upsdell

1994 ◽  
Vol 266 (1) ◽  
pp. L9-L16 ◽  
Author(s):  
K. A. Jones ◽  
R. R. Lorenz ◽  
D. O. Warner ◽  
Z. S. Katusic ◽  
G. C. Sieck

Nitrovasodilators relax airway smooth muscle by both guanosine 3',5'-cyclic monophosphate (cGMP)-dependent and cGMP-independent mechanisms and by mechanisms that reduce cytosolic calcium concentration ([Ca2+]i). This study was conducted to determine the relative importance of these mechanisms in relaxation of canine tracheal smooth muscle (CTSM) induced by 3-morpholinosydnonimine (SIN-1). We measured 1) the effect of SIN-1 on force, [cGMP]i, and [Ca2+]i, and 2) the ability of methylene blue (MB) to antagonize SIN-1-induced relaxation and cGMP accumulation. The ratio of fura 2 emission fluorescence intensities due to excitation at 340- and 380-nm wavelengths (F340/F380) was used as an index of [Ca2+]i. In strips contracted with 0.3 microM acetylcholine (ACh, n = 8) or 24 mM KCl (n = 8), SIN-1 (1-100 microM) caused a concentration-dependent decrease in force which was correlated with a concentration-dependent increase in [cGMP]i. MB (10 microM) proportionally attenuated both relaxation and cGMP accumulation. In fura 2-loaded strips contracted with 0.3 microM ACh (n = 7) or 30 mM KCl (n = 7), reductions in force induced by SIN-1 (1-100 microM) were accompanied by decreases in F340/F380. These findings suggest that in CTSM contracted with ACh or KCl, SIN-1 causes relaxation which appears to be mediated by cGMP-dependent mechanisms that reduce [Ca2+]i.


Sign in / Sign up

Export Citation Format

Share Document