phosphorus sorption
Recently Published Documents


TOTAL DOCUMENTS

401
(FIVE YEARS 62)

H-INDEX

46
(FIVE YEARS 3)

2022 ◽  
Vol 216 ◽  
pp. 105251
Author(s):  
Larissa Ghodszad ◽  
Adel Reyhanitabar ◽  
Shahin Oustan ◽  
Leila Alidohkt
Keyword(s):  

Author(s):  
Berhanu Dinssa ◽  
Eyasu Elias

<span>One of the most soil fertility management problems for crop production on acidic soils of the Ethiopian highlands is phosphorus fixation. The research was executed to assess the P-sorption capacity and to determine the external P requirement of different acidic soils in the Southwestern highlands of Ethiopia. Phosphorus sorption capacity (Kf) and its relation with selected soil characteristics were assessed for some major agricultural soils in the Ethiopian highlands to answer the questions, ‘What are the amount of P-sorption capacity and external P requirement of Nitisols, Luvisols, Alisols, and Andosols in Ethiopia?’. Twelve surface soil samples (at depth of 0-30 cm) were gathered and the P-sorption capacity was estimated. Phosphorus-sorption data were obtained by equilibrating 1 g of the 12 soil samples with 25 ml of KH<sub>2</sub>PO<sub>4</sub> in 0.01 M CaCl2, having 0, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300, and 330 mg P L<sup>-1</sup> for 24 hours. The data were adjusted to the Freundlich adsorption model and the relationship among P-sorption and soil characteristics was established by correlation analysis.  Clay content and exchangeable acidity, organic matter, Al<sub>2</sub>O<sub>3</sub>, and Fe<sub>2</sub>O<sub>3</sub> oxides have affected phosphorus-sorption at a significance level of (P &lt; 0.05).  Alisols had the highest Kf value (413 mg kg<sup>-1</sup>) but Nitisols had the lowest Kf (280 mg kg<sup>-1</sup>). The external phosphorus fertilizer requirement of the soils was in the order of 25, 30, 32, and 26 mg P kg<sup>-1</sup> for Nitisols, Luvisols, Alisols, and Andosols sequentially. The Kf varies among different soil types of the study area. The magnitude of the soil’s Kf was affected by the pH of the soil, soil OM content, and oxides of Fe and Al. Therefore, knowledge of the soils’ P retention capacity is highly crucial to determine the correct rate of P </span><span>fertilizer</span><span> for crop production.</span>


2021 ◽  
pp. 27-36
Author(s):  
Adams Emomu ◽  
Esohe Ehis-Iyoha ◽  
Emmanuel Ochuko Ufinomue ◽  
Donald Okpo Odidi ◽  
Sandra Amen Ighedosa

To provide information on best model to predict Phosphorus (P) Sorption unto Soils derived from Basement Complex Rock, Alluvium, Coastal Plain Sand and Imo Shale Parent Materials in 3 states of Nigeria. Completely randomized design was used to collect surface soil samples in 3 replications from 4 locations in Nigeria. Samples were collected from Idanre, Koko, NIFOR and Uhonmora in Ondo, Delta and Edo states Nigeria, laboratory analysis was carried out in the Central analytical laboratory of Nigerian Institute for Oil-Palm Research (NIFOR) Benin City, Nigeria between march 2016 and September 2017. Soil samples were equilibrated in 25 ml of 0.01 M CaCl2 containing various concentration of P as KH2PO4  to give 0, 50, 100, 150, 200 and 250 mg/L P for 24 hours (h) at room temperature 25 ± 2oC. 3 drops of CHCl3 was added to inhibit P mineralization. The suspension was shaken for 24 h on a reciprocating mechanical shaker, centrifuged at 7000 rpm After equilibration, decanted and P determined using spectrophotometer. The sorption data were fitted to linear Freundlich and Langmuir sorption isotherm. Considering the Freundlich model, P adsorption capacity (a) and P sorption energy (n) was highest in soils B (1400 mg kg-1) and (2.806 L kg-1) respectively. The Freundlich model fitted better to the data obtained with average root mean square error (RMSE) and R2 value of 0.69 and 0.951 respectively, as against average RMSE and R2 value of 1.60 and 0.883 respectively obtained from Langmuir model. The sorption data fitted well to Freundlich and Langmuir isotherms of which Freundlich Adsorption model was found to be better based on lowest RMSE (0.69) and highest regression (R2 = 0.951) value. Freundlich model should be adopted to determine P sorption characteristics of the soils studied. These predictors, however, need further works to validate reliability.


Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 674
Author(s):  
Sílvio Junio Ramos ◽  
Duane Azevedo Pinto ◽  
Rafael Silva Guedes ◽  
Yan Nunes Dias ◽  
Cecílio Fróis Caldeira ◽  
...  

Organic materials, such as biochar and organic compost, can reduce P sorption mechanisms and improve soil fertility, benefiting the reclamation of areas impacted by mining. This study evaluated how the chemical properties of Fe mining soil, the adsorption of P onto this substrate, and the growth of the native plant Dioclea apurensis, were affected by the application of açaí biochar (BC), organic compost (OC), and different P doses. Substrate collected from mining soil piles was incubated for 30 days with BC or OC. Each mining substrate with or without the addition of BC or OC received five doses of P (0, 40, 80, 120, and 240 mg∙kg−1 P). The addition of BC or OC promoted an increase in pH and nutrient availability (P, K, Ca, and B) in Fe mining soil. However, plants grown in the unamended mining soil (W) showed higher growth. The maximum P adsorption capacity decreased as a function of the addition of BC. We conclude that the application of BC reduced P sorption, while the application of either OC or BC altered the chemical properties of the soil and caused contrasting effects on P dynamics in Fe mining soil, and these treatments also affected plant growth.


Author(s):  
Robert Ehi Orhue ◽  
Adams Emomu ◽  
Esohe Obazuaye ◽  
Aimiesomon Michael Erhayimwen ◽  
Ajayi Gboyega Bepo

This study aimed at evaluating phosphorus (P) sorption capacities in Soils overlying basement complex Rock (A), Alluvium (B), coastal plain sand (C) and Imo shale (C) parent materials. Completely randomized design was used to collect soil samples from 5 depths in 3 replications from Idanre, Koko, NIFOR and Uhomora in Nigeria. Samples collected were analyzed in the central analytical laboratory of the Nigerian Institute for Oil palm Research, Benin City, Nigeria between march 2016 and September 2017. 60 soil samples were equilibrated in 25 ml of 0.01 M CaCl2 containing various concentration of P as KH2PO4  to give 0, 50, 100, 150, 200 and 250 mg/L P for 24 hours (h)  at room temperature 25 ± 2 oC. Genstat statistical package was used to calculate Analysis of variance, correlation of Phosphorus sorption index (PSI) with soil properties, coefficient of variation, means separation and Least Significant difference (LSD). The rate and %P adsorption increased with increasing concentration of P added to the soils. The P sorption capacities of the soils considering Freundlich model decreased in the order of D > B > C >A. %P adsorbed was highest in D soils with value of 15.19% for 100 mg/kg P added. The PSI correlated with organic carbon r = -0.58 P ≤ .05 in C soils, r = 0.44 P ≤ .05 in D soils, it also correlated with N r = -0.58 P ≤ .05 in C Soils, K r = 0.57 P ≤ .05, r = 0.49 P ≤ .05 in C and D soils respectively. D soils sorbed more P than other soils hence the D soils will require more P fertilization to attain optimum P concentration in soil solution, however further study is required to determine the form of P sorbed by these parent materials.


2021 ◽  
Author(s):  
Whitney M King ◽  
Susan E Curless ◽  
James M Hood

Bioavailable phosphorus exports from rivers during high flow often fuel downstream harmful cyanobacterial blooms; yet whether river phosphorus cycles affect these exports is unclear. Here, we examined river phosphorus cycling during high flow events in a large agricultural watershed that drives cyanobacterial blooms in Lake Erie. We show that between 2003 and 2019 river phosphorus cycles, through phosphorus sorption, reduced bioavailable phosphorus exports by 24%, potentially constraining Lake Erie cyanobacterial blooms by 61%. Over the last 45-years, phosphorus sorption has declined with suspended sediment exports due to increases in soil-erosion-minimizing agricultural practices, likely contributing to recent cyanobacterial blooms. In this, and likely other agricultural watersheds, rivers perform an unrecognized ecosystem service during high flow creating field-river-lake linkages that need to be incorporated into phosphorus management.


Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 373
Author(s):  
Jonathan Suazo-Hernández ◽  
Erwin Klumpp ◽  
Nicolás Arancibia-Miranda ◽  
Patricia Poblete-Grant ◽  
Alejandra Jara ◽  
...  

Engineered nanoparticles (ENPs) present in consumer products are being released into the agricultural systems. There is little information about the direct effect of ENPs on phosphorus (P) availability, which is an essential nutrient for crop growthnaturally occurring in agricultural soils. The present study examined the effect of 1, 3, and 5% doses of Cu0 or Ag0 ENPs stabilized with L-ascorbic acid (suspension pH 2–3) on P ad- and desorption in an agricultural Andisol with total organic matter (T-OM) and with partial removal of organic matter (R-OM) by performing batch experiments. Our results showed that the adsorption kinetics data of H2PO4− on T-OM and R-OM soil samples with and without ENPs were adequately described by the pseudo-second-order (PSO) and Elovich models. The adsorption isotherm data of H2PO4− from T-OM and R-OM soil samples following ENPs addition were better fitted by the Langmuir model than the Freundlich model. When the Cu0 or Ag0 ENPs doses were increased, the pH value decreased and H2PO4− adsorption increased on T-OM and R-OM. The H2PO4− desorption (%) was lower with Cu0 ENPs than Ag0 ENPs. Overall, the incorporation of ENPs into Andisols generated an increase in P retention, which may affect agricultural crop production.


2021 ◽  
Vol 328 ◽  
pp. 115402
Author(s):  
Ibrahim Maamoun ◽  
Ramadan Eljamal ◽  
Omar Falyouna ◽  
Khaoula Bensaida ◽  
Yuji Sugihara ◽  
...  

Agriculture ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 295
Author(s):  
Marina Moura Morales ◽  
Nicholas Brian Comerford ◽  
Maurel Behling ◽  
Daniel Carneiro de Abreu ◽  
Iraê Amaral Guerrini

The phosphorus (P) chemistry of biochar (BC)-amended soils is poorly understood. This statement is based on the lack of published research attempting a comprehensive characterization of biochar’s influence on P sorption. Therefore, this study addressed the kinetic limitations of these processes. This was accomplished using a fast pyrolysis biochar made from a mix of waste materials applied to a highly weathered Latossolo Vermelho distrofico (Oxisol) from São Paulo, Brazil. Standard method (batch method) was used. The sorption kinetic studies indicated that P sorption in both cases, soil (S) and soil-biochar (SBC), had a relatively fast initial reaction between 0 to 5 min. This may have happened because adding biochar to the soil decreased P sorption capacity compared to the mineral soil alone. Presumably, this is a result of: (i) Inorganic phosphorus desorbed from biochar was resorbed onto the mineral soil; (ii) charcoal particles physically covered P sorption locations on soil; or (iii) the pH increased when BC was added SBC and the soil surface became more negatively charged, thus increasing anion repulsion and decreasing P sorption.


Sign in / Sign up

Export Citation Format

Share Document