Spectral, in vitro antiradical and antimicrobial assessment of copper complexes containing tridentate Schiff base derived from dihydroxybenzene functionality with diaminoethylene bridge

2021 ◽  
pp. 1-19
Author(s):  
Ikechukwu P. Ejidike ◽  
Mercy O. Bamigboye ◽  
Hadley S. Clayton
2021 ◽  
Author(s):  
Nazanin Kordestani ◽  
Hadi Amiri Rudbari ◽  
Alexandra R Fernandes ◽  
Luís R Raposo ◽  
André Luz ◽  
...  

To investigate the effect of different halogen substituents, leaving groups and the flexibility of ligand on the anticancer activity of copper complexes, sixteen copper(II) complexes with eight different tridentate Schiff-base...


2019 ◽  
Vol 48 (14) ◽  
pp. 4667-4676 ◽  
Author(s):  
Fu-Yin Cheng ◽  
Chen-Yen Tsai ◽  
Bor-Hunn Huang ◽  
Kuan-Yeh Lu ◽  
Chu-Chieh Lin ◽  
...  

The dinuclear copper complexes 1 and 2 performed satisfactorily to produce polyesters with controllable molecular weights and high ester linkages.


Polyhedron ◽  
2012 ◽  
Vol 45 (1) ◽  
pp. 49-54 ◽  
Author(s):  
Bao-Tsan Ko ◽  
Chia-Chih Chang ◽  
Shu-Ling Lai ◽  
Fun-Jie Lai ◽  
Chu-Chieh Lin

2016 ◽  
Author(s):  
Elżbieta Hejchman ◽  
Barbara Sowirka ◽  
Magdalena Tomczyk ◽  
Dorota Maciejewska

Based on World Health Organization (WHO) report, it was estimated that one in five people before age 75 will suffer from cancer during their lifetime, and more than 13 million cancers death will happen in 2030. Chemotherapy is a basic approach for the treatment of cancer diseases. However, because of drug resistance and considerable side effects drug-induced toxicity, the discovery of new metal analogs with promising activity and high therapeutic index is an urgent need. The fundamental role of copper and the recognition of its complexes as important bioactive compounds in vitro and in vivo aroused an ever-increasing interest in these agents as potential drugs for therapeutic intervention in various diseases. Schiff bases are a critical class of compounds in medical chemistry that have demonstrated significant chemotherapeutic and antibacterial application. Schiff base Cu(II) complexes revealed great potential for antiproliferative, antibacterial, and gastroprotective activity. Coumarins are a wide class of natural and synthetic compounds that showed diverse pharmacological activities including anticancer activity. Among the wide variety of coumarins, 7-hydroxycoumarin derivatives have been shown to possess desirable antiproliferative activities. In particular, their antibacterial, antifungal and anticancer activities make the compounds attractive for further derivatization and screening as novel therapeutic agents. Taking these compounds as lead, we have designed and synthesized a series of new copper(II) complexes with coumarin-derived Schiff base ligands. Two series of Schiff bases were prepared by condensation of 8-formyl-7-hydroxy-4-methylcoumarin and 8-acetyl-7-hydroxy-4-methylcoumarin with p-substituted aniline derivatives. These compounds were used as ligands in the synthesis of copper(II) complexes. The obtained Schiff bases as well as copper complexes are mostly novel molecules. Only the products of condensation 8-formyl-7-hydroxy-4-methylcoumarin with p-toluidine and 8-acetyl-7-hydroxy-4-methylcoumarin with p-toluidine and its copper(II) complex were synthesized, but the anticancer activity of these compounds was not determined. The assay of their cytotoxic activity is in progress. Preliminary, we have identified two copper(II) coordination compounds of 7-hydroxy-8-[1-(4-methoxyphenyl imino)ethyl]-4-methyl-2H-chromen-2-one and 7-hydroxy-8-[1-(4-hydroxyphenyloimino)ethyl]-4-methyl-2H- chromen-2-one having dose-dependent antiproliferative activity on HeLa cancer cell line. Additionally, the Schiff bases – derivatives of substituted salicylaldehydes and 2-hydroxyacetophenones condensed with appropriate anilines were prepared. Such compounds have been reported in scientific papers, their copper complexes have not been assayed yet, and may serve as an useful tool in QSAR investigation.


2016 ◽  
Author(s):  
Elżbieta Hejchman ◽  
Barbara Sowirka ◽  
Magdalena Tomczyk ◽  
Dorota Maciejewska

Based on World Health Organization (WHO) report, it was estimated that one in five people before age 75 will suffer from cancer during their lifetime, and more than 13 million cancers death will happen in 2030. Chemotherapy is a basic approach for the treatment of cancer diseases. However, because of drug resistance and considerable side effects drug-induced toxicity, the discovery of new metal analogs with promising activity and high therapeutic index is an urgent need. The fundamental role of copper and the recognition of its complexes as important bioactive compounds in vitro and in vivo aroused an ever-increasing interest in these agents as potential drugs for therapeutic intervention in various diseases. Schiff bases are a critical class of compounds in medical chemistry that have demonstrated significant chemotherapeutic and antibacterial application. Schiff base Cu(II) complexes revealed great potential for antiproliferative, antibacterial, and gastroprotective activity. Coumarins are a wide class of natural and synthetic compounds that showed diverse pharmacological activities including anticancer activity. Among the wide variety of coumarins, 7-hydroxycoumarin derivatives have been shown to possess desirable antiproliferative activities. In particular, their antibacterial, antifungal and anticancer activities make the compounds attractive for further derivatization and screening as novel therapeutic agents. Taking these compounds as lead, we have designed and synthesized a series of new copper(II) complexes with coumarin-derived Schiff base ligands. Two series of Schiff bases were prepared by condensation of 8-formyl-7-hydroxy-4-methylcoumarin and 8-acetyl-7-hydroxy-4-methylcoumarin with p-substituted aniline derivatives. These compounds were used as ligands in the synthesis of copper(II) complexes. The obtained Schiff bases as well as copper complexes are mostly novel molecules. Only the products of condensation 8-formyl-7-hydroxy-4-methylcoumarin with p-toluidine and 8-acetyl-7-hydroxy-4-methylcoumarin with p-toluidine and its copper(II) complex were synthesized, but the anticancer activity of these compounds was not determined. The assay of their cytotoxic activity is in progress. Preliminary, we have identified two copper(II) coordination compounds of 7-hydroxy-8-[1-(4-methoxyphenyl imino)ethyl]-4-methyl-2H-chromen-2-one and 7-hydroxy-8-[1-(4-hydroxyphenyloimino)ethyl]-4-methyl-2H- chromen-2-one having dose-dependent antiproliferative activity on HeLa cancer cell line. Additionally, the Schiff bases – derivatives of substituted salicylaldehydes and 2-hydroxyacetophenones condensed with appropriate anilines were prepared. Such compounds have been reported in scientific papers, their copper complexes have not been assayed yet, and may serve as an useful tool in QSAR investigation.


2020 ◽  
Vol 2020 ◽  
pp. 1-21
Author(s):  
Maurice Kuate ◽  
Mariam Asseng Conde ◽  
Evans Ngandung Mainsah ◽  
Awawou G. Paboudam ◽  
Francis Merlin M. Tchieno ◽  
...  

A novel tridentate Schiff base, 1-((E)-(2-mercaptophenylimino) methyl) naphthalen-2-ol (H2L1), was synthesized by the condensation reaction of 2-hydroxy-1-naphthaldehyde with 2-aminothiophenol in absolute ethanol. The resulting ligand was reacted with Co(II), Ni(II), and Cu(II) ions to obtain tetrahedral CoL1, NiL1, and square planar CuL1 complexes. The Schiff base and its metal complexes were characterized using 1H-NMR, microanalysis, FT-IR, UV-visible, and mass spectroscopy (ESI-MS). All the compounds are soluble in DMSO and DMF. Spectroscopic studies show that the ligand coordinates to the metal center through the azomethine nitrogen, naphthoxide oxygen, and thiophenoxide sulfur to form a tridentate chelate system. Conductance measurements show that these compounds are molecular in solution. Cyclic voltammetry studies show Co(III)/Co(II) and Cu(II)/Cu(I) redox systems to be quasi-reversible involving a monoelectronic transfer while Ni(III)/Ni(II) was irreversible. In vitro antibacterial and antifungal activity against five bacterial strains (Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Enterococcus faecalis, and Proteus mirabilis) and five fungal strains (Candida albicans, Candida glabrata, Candida tropicalis, Candida krusei, and Candida parapsilosis) showed no antifungal activity but moderate antibacterial activity on E. coli, S. aureus, P. aeruginosa, and P. mirabilis bacterial strains. Antioxidant studies reveal that the ligand and its Cu(II) complex are more potent than Co(II) and Ni(II) complexes to eliminate free radicals.


F1000Research ◽  
2016 ◽  
Vol 5 ◽  
pp. 1921 ◽  
Author(s):  
Margarita Malakyan ◽  
Nelly Babayan ◽  
Ruzanna Grigoryan ◽  
Natalya Sarkisyan ◽  
Vahan Tonoyan ◽  
...  

Schiff bases and their metal-complexes are versatile compounds exhibiting a broad range of biological activities and thus actively used in the drug development process. The aim of the present study was the synthesis and characterization of new Schiff bases and their copper (II) complexes, derived from L-tryptophan and isomeric (2-; 3-; 4-) pyridinecarboxaldehydes, as well as the assessment of their toxicity in vitro. The optimal conditions of the Schiff base synthesis resulting in up to 75-85% yield of target products were identified. The structure-activity relationship analysis indicated that the location of the carboxaldehyde group at 2-, 3- or 4-position with regard to nitrogen of the pyridine ring in aldehyde component of the L-tryptophan derivative Schiff bases and corresponding copper complexes essentially change the biological activity of the compounds. The carboxaldehyde group at 2- and 4-positions leads to the higher cytotoxic activity, than that of at 3-position, and the presence of the copper in the complexes increases the cytotoxicity. Based on toxicity classification data, the compounds with non-toxic profile were identified, which can be used as new entities in the drug development process using Schiff base scaffold.


Sign in / Sign up

Export Citation Format

Share Document