The Crepant Resolution Conjecture for Three-Dimensional Flags Modulo an Involution

2013 ◽  
Vol 41 (2) ◽  
pp. 736-764 ◽  
Author(s):  
W. D. Gillam
2009 ◽  
Vol 20 (06) ◽  
pp. 791-801 ◽  
Author(s):  
S. BOISSIÈRE ◽  
E. MANN ◽  
F. PERRONI

We prove the cohomological crepant resolution conjecture of Ruan for the weighted projective space ℙ(1,3,4,4). To compute the quantum corrected cohomology ring, we combine the results of Coates–Corti–Iritani–Tseng on ℙ(1,1,1,3) and our previous results.


2019 ◽  
Vol 2019 (755) ◽  
pp. 191-245 ◽  
Author(s):  
Andrea Brini ◽  
Renzo Cavalieri ◽  
Dustin Ross

AbstractIn the present paper, we formulate a Crepant Resolution Correspondence for open Gromov–Witten invariants (OCRC) of toric Lagrangian branes inside Calabi–Yau 3-orbifolds by encoding the open theories into sections of Givental’s symplectic vector space. The correspondence can be phrased as the identification of these sections via a linear morphism of Givental spaces. We deduce from this a Bryan–Graber-type statement for disk invariants, which we extend to arbitrary topologies in the Hard Lefschetz case. Motivated by ideas of Iritani, Coates–Corti–Iritani–Tseng and Ruan, we furthermore propose (1) a general form of the morphism entering the OCRC, which arises from a geometric correspondence between equivariant K-groups, and (2) an all-genus version of the OCRC for Hard Lefschetz targets. We provide a complete proof of both statements in the case of minimal resolutions of threefold {A_{n}}-singularities; as a necessary step of the proof we establish the all-genus closed Crepant Resolution Conjecture with descendents in its strongest form for this class of examples. Our methods rely on a new description of the quantum D-modules underlying the equivariant Gromov–Witten theory of this family of targets.


2018 ◽  
Vol Volume 2 ◽  
Author(s):  
Andrea Brini ◽  
Renzo Cavalieri

We recently formulated a number of Crepant Resolution Conjectures (CRC) for open Gromov-Witten invariants of Aganagic-Vafa Lagrangian branes and verified them for the family of threefold type A-singularities. In this paper we enlarge the body of evidence in favor of our open CRCs, along two different strands. In one direction, we consider non-hard Lefschetz targets and verify the disk CRC for local weighted projective planes. In the other, we complete the proof of the quantized (all-genus) open CRC for hard Lefschetz toric Calabi-Yau three dimensional representations by a detailed study of the G-Hilb resolution of $[C^3/G]$ for $G=\mathbb{Z}_2 \times \mathbb{Z}_2$. Our results have implications for closed-string CRCs of Coates-Iritani-Tseng, Iritani, and Ruan for this class of examples. Comment: v2: typos fixed, minor changes. v3: some minor points have been clarified, further typos fixed. v4: version accepted for publication on EPIGA


2021 ◽  
Vol 9 ◽  
Author(s):  
Henry Liu

Abstract We prove an equivalence between the Bryan-Steinberg theory of $\pi $ -stable pairs on $Y = \mathcal {A}_{m-1} \times \mathbb {C}$ and the theory of quasimaps to $X = \text{Hilb}(\mathcal {A}_{m-1})$ , in the form of an equality of K-theoretic equivariant vertices. In particular, the combinatorics of both vertices are described explicitly via box counting. Then we apply the equivalence to study the implications for sheaf-counting theories on Y arising from 3D mirror symmetry for quasimaps to X, including the Donaldson-Thomas crepant resolution conjecture.


2007 ◽  
Vol 59 (2) ◽  
pp. 332-342 ◽  
Author(s):  
Graham J. Leuschke

AbstractFor a commutative local ring R, consider (noncommutative) R-algebras Λ of the form Λ = EndR(M) where M is a reflexive R-module with nonzero free direct summand. Such algebras Λ of finite global dimension can be viewed as potential substitutes for, or analogues of, a resolution of singularities of Spec R. For example, Van den Bergh has shown that a three-dimensional Gorenstein normal ℂ-algebra with isolated terminal singularities has a crepant resolution of singularities if and only if it has such an algebra Λ with finite global dimension and which is maximal Cohen–Macaulay over R (a “noncommutative crepant resolution of singularities”). We produce algebras Λ = EndR(M) having finite global dimension in two contexts: when R is a reduced one-dimensional complete local ring, or when R is a Cohen–Macaulay local ring of finite Cohen–Macaulay type. If in the latter case R is Gorenstein, then the construction gives a noncommutative crepant resolution of singularities in the sense of Van den Bergh.


Sign in / Sign up

Export Citation Format

Share Document