Slip transfer of deformation twins in duplex γ-based Ti–Al alloys. Part II. Transfer across γ–α2interfaces

2000 ◽  
Vol 80 (12) ◽  
pp. 2785-2811 ◽  
Author(s):  
C. T. Forwood ◽  
M. A. Gibson
2007 ◽  
Vol 345-346 ◽  
pp. 25-28 ◽  
Author(s):  
Yoshito Nishimura ◽  
Nagato Ono ◽  
Sei Miura

In order to make clear the micro-yielding mechanisms of polycrystalline metals including twins, the movement of dislocations in the surface grains of Cu-6.8at%Al alloy and pure Mg polycrystals during the early stages of deformation was directly observed by using etch pit technique. The fresh dislocations multiply from the Frank-Read sources within the grains, and pile up against the twin and grain boundaries of two kinds of specimens. The pile-up dislocations on the primary and/or secondary slip planes are also confirmed in Cu-6.8at%Al alloys. Especially during the compressive loading for pure Mg, the occurrence of deformation twins is remarkable with an increase of strain rate, whereas the distribution of fresh dislocations tends to decrease in the surface grains. The present results suggest that the effect of twin boundaries on micro-yielding is almost equivalent for that of grain boundaries, which act as barriers to moving dislocations even in the pre-yield deformation.


Author(s):  
K. Kuroda ◽  
Y. Tomokiyo ◽  
T. Kumano ◽  
T. Eguchi

The contrast in electron microscopic images of planar faults in a crystal is characterized by a phase factor , where is the reciprocal lattice vector of the operating reflection, and the lattice displacement due to the fault under consideration. Within the two-beam theory a planar fault with an integer value of is invisible, but a detectable contrast is expected when the many-beam dynamical effect is not negligibly small. A weak fringe contrast is also expected when differs slightly from an integer owing to an additional small displacement of the lattice across the fault. These faint contrasts are termed as many-beam contrasts in the former case, and as ε fringe contrasts in the latter. In the present work stacking faults in Cu-Al alloys and antiphase boundaries (APB) in CuZn, FeCo and Fe-Al alloys were observed under such conditions as mentioned above, and the results were compared with the image profiles of the faults calculated in the systematic ten-beam approximation.


Author(s):  
W. T. Donlon ◽  
J. E. Allison ◽  
S. Shinozaki

Light weight materials which possess high strength and durability are being utilized by the automotive industry to increase fuel economy. Rapidly solidified (RS) Al alloys are currently being extensively studied for this purpose. In this investigation the microstructure of an extruded Al-8Fe-2Mo alloy, produced by Pratt & Whitney Aircraft, Goverment Products Div. was examined in a JE0L 2000FX AEM. Both electropolished thin sections, and extraction replicas were examined to characterize this material. The consolidation procedure for producing this material included a 9:1 extrusion at 340°C followed by a 16:1 extrusion at 400°C, utilizing RS powders which have also been characterized utilizing electron microscopy.


1977 ◽  
Vol 38 (C7) ◽  
pp. C7-364-C7-364 ◽  
Author(s):  
D. PARIS ◽  
P. LESBATS
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document