Slip transfer of deformation twins in duplex y-based Ti-Al alloys: Part III. Transfer across general large-angle γ-γ grain boundaries

2002 ◽  
Vol 82 (7) ◽  
pp. 1381-1404 ◽  
Author(s):  
M. A. Gibson ◽  
C. T. Forwood
Author(s):  
André Pineau

The size and the character (low and large angle, special boundaries, tilt and twist boundaries, twins) of the grain boundaries (GBs) in polycrystalline materials influence their strength and their fracture toughness. Recent studies devoted to nanocrystalline (NC) materials have shown a deviation from the Hall–Petch law. Special GBs formed by Σ3 twins in face-centred cubic metals are also known to have a strong effect on the mechanical behaviour of these metals, in particular their work-hardening rate. Grain orientation influences also crack path, the fracture toughness of body-centred cubic (BCC) metals and the fatigue crack growth rate of microstructurally short cracks. This paper deals both with slip transfer at GBs and with the interactions between propagating cracks with GBs. In the analysis of slip transfer, the emphasis is placed on twin boundaries (TBs) for which the dislocation reactions during slip transfer are analysed theoretically, experimentally and using the results of atomic molecular simulations published in the literature. It is shown that in a number of situations this transfer leads to a normal motion of the TB owing to the displacement of partial dislocations along the TB. This motion can generate a de-twinning effect observed in particular in NC metals. Crack propagation across GBs is also considered. It is shown that cleavage crack path behaviour in BCC metals is largely dependent on the twist component of the GBs. A mechanism for the propagation of these twisted cracks involving a segmentation of the crack front and the existence of intergranular parts is discussed and verified for a pressure vessel steel. A similar segmentation seems to occur for short fatigue cracks although, quite surprisingly, this crossing mechanism for fatigue cracks does not seem to have been examined in very much detail in the literature. Metallurgical methods used to improve the strength of the materials, via grain boundaries, are briefly discussed.


2007 ◽  
Vol 345-346 ◽  
pp. 25-28 ◽  
Author(s):  
Yoshito Nishimura ◽  
Nagato Ono ◽  
Sei Miura

In order to make clear the micro-yielding mechanisms of polycrystalline metals including twins, the movement of dislocations in the surface grains of Cu-6.8at%Al alloy and pure Mg polycrystals during the early stages of deformation was directly observed by using etch pit technique. The fresh dislocations multiply from the Frank-Read sources within the grains, and pile up against the twin and grain boundaries of two kinds of specimens. The pile-up dislocations on the primary and/or secondary slip planes are also confirmed in Cu-6.8at%Al alloys. Especially during the compressive loading for pure Mg, the occurrence of deformation twins is remarkable with an increase of strain rate, whereas the distribution of fresh dislocations tends to decrease in the surface grains. The present results suggest that the effect of twin boundaries on micro-yielding is almost equivalent for that of grain boundaries, which act as barriers to moving dislocations even in the pre-yield deformation.


2010 ◽  
Vol 654-656 ◽  
pp. 1231-1234
Author(s):  
Takumi Ikeda ◽  
Hiroyuki Miyamoto ◽  
Toshiyuki Uenoya ◽  
Satoshi Hashimoto ◽  
Alexei Vinogradov

The pure copper single crystals with specific crystallographic orientated were subjected to ECAP for one pass at room temperature. Two types of shear bands were observed. Type 1 shear bands were constructed with clusters of distorting micro shear bands and matrix. Micro shear band and matrix were delineated by large-angle grain boundaries, and these two orientations are in a twinning relationship. Parallel sets of deformation twins were observed in the matrix. Type 2 shear bands had no crystallographic feature, and shear band and matrix were considered as low-angle grain boundaries. Deformation twin was not observed both in matrix and the shear bands.


2006 ◽  
Vol 503-504 ◽  
pp. 125-132 ◽  
Author(s):  
Yuntian T. Zhu

Deformation twins have been oberved in nanocrystalline (NC) Al synthsized by cryogenic ball-milling and in NC Cu processed by high-pressure torsion under room temperature and at a very low strain rate. They were found formed by partial dislocations emitted from grain boundaries. This paper first reviews experimental evidences on deformation twinning and partial dislocation emissions from grain boundaries, and then discusses recent analytical models on the nucleation and growth of deformation twins. These models are compared with experimental results to establish their validity and limitations.


Sign in / Sign up

Export Citation Format

Share Document