Emission analysis of a CI engine during cold weather conditions using pre-heated air and engine using waste energy and phase-change material

2017 ◽  
Vol 39 (3) ◽  
pp. 278-284 ◽  
Author(s):  
M. K. Rath ◽  
S. K. Acharya
Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2558 ◽  
Author(s):  
Preeti Singh ◽  
Sourav Khanna ◽  
Sanjeev Newar ◽  
Vashi Sharma ◽  
K. Reddy ◽  
...  

Phase change material (PCM) based passive cooling of photovoltaics (PV) can be highly productive due to high latent heat capacity. However, the low rate of heat transfer limits its usefulness. Thus, the presented work aims at the improvement in PV cooling by using finned PCM (FPCM) heat sinks. In the present study, PCM heat sink and FPCM heat sinks were investigated numerically for PV cooling and the extracted heat is used for space heating. 4 kWp PV, PV-PCM and PV-FPCM systems were studied under the weather conditions of Southeast of England. It was observed that the PCM heat sinks can drop the peak PV temperature by 13 K, whereas FPCM heat sinks can enhance the PV cooling by 19 K. The PCM heat sinks can increase the PV electrical efficiency from 13% to 14%. Moreover, the daily electricity generation can be boosted by 7% using PCM and 8% by using FPCM heat sinks. In addition, 7 kWh of thermal output was achieved using the FPCM heat sink, and the overall efficiency of system increased from 13% to 19%.


2019 ◽  
Vol 43 (4) ◽  
pp. 351-364 ◽  
Author(s):  
S Kumar ◽  
S Arun Prakash ◽  
V Pandiyarajan ◽  
NB Geetha ◽  
V Antony Aroul Raj ◽  
...  

The present trend in building research is to improve sustainability in building construction and operation. The development of new renewable technologies is essential to improve the sustainability and to reduce emissions. The incorporation of phase change materials in buildings is an effective way to reduce the room temperature fluctuations and cooling loads/heating loads. Although several works have been carried out in this field, a novel phase change material clay hollow-brick composite has been used in this work. This article discusses the research on investigating the thermal performance of phase change material integration in building walls. Two identical test rooms (3 m × 3 m × 3.65 m) were constructed to study the effect of phase change material integration in buildings. The experimental buildings were constructed for the warm and humid weather conditions of Chennai city, India. Phase change material integration in the building wall is beneficial for reduction of room temperature and provides passive cooling of the building. The temperature drop in a phase change material room compared with a non-phase change material room varies from 6°C to 2°C, during various months of the year. DESIGNBUILDER simulation was carried out for phase change material and non-phase change material buildings during the months of January, March, May, and July. The simulated room temperature variation follows the same pattern in these months.


2018 ◽  
Vol 49 (6) ◽  
pp. 509-528 ◽  
Author(s):  
Orawan Aumporn ◽  
Belkacem Zeghmati ◽  
Xavier Chesneau ◽  
Serm Janjai

2018 ◽  
Author(s):  
Ryohei Gotoh ◽  
Tsuyoshi Totani ◽  
Masashi Wakita ◽  
Harunori Nagata

Sign in / Sign up

Export Citation Format

Share Document