Object-based image analysis for operational fine-scale regional mapping of land cover within river corridors from multispectral imagery and thematic data

2012 ◽  
Vol 33 (14) ◽  
pp. 4603-4633 ◽  
Author(s):  
T. Tormos ◽  
P. Kosuth ◽  
S. Durrieu ◽  
S. Dupuy ◽  
B. Villeneuve ◽  
...  
Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1133 ◽  
Author(s):  
Mark Randall ◽  
Rasmus Fensholt ◽  
Yongyong Zhang ◽  
Marina Bergen Jensen

China’s Sponge City initiative will involve widespread installation of new stormwater infrastructure including green roofs, permeable pavements and rain gardens in at least 30 cities. Hydrologic modelling can support the planning of Sponge Cities at the catchment scale, however, highly detailed spatial data for model input can be challenging to compile from the various authorities, or, if available, may not be sufficiently detailed or updated. Remote sensing methods show great promise for mitigating this challenge due to their ability to efficiently classify satellite images into categories relevant to a specific application. In this study Geographic Object Based Image Analysis (GEOBIA) was applied to WorldView-3 satellite imagery (2017) to create a detailed land cover map of an urban catchment area in Beijing. While land cover classification results based on a Bayesian machine learning classifier alone provided an overall land cover classification accuracy of 63%, the subsequent inclusion of a series of refining rules in combination with supplementary data (including elevation and parcel delineations), yielded the significantly improved overall accuracy of 76%. Results of the land cover classification highlight the limitations of automated classification based on satellite imagery alone and the value of supplementary data and additional rules to refine classification results. Catchment scale hydrologic modelling based on the generated land cover results indicated that 61 to 82% of rainfall volume could be captured for a range of 24 h design storms under varying degrees of Sponge City implementation.


2017 ◽  
Vol 38 (8-10) ◽  
pp. 2535-2556 ◽  
Author(s):  
Bahareh Kalantar ◽  
Shattri Bin Mansor ◽  
Maher Ibrahim Sameen ◽  
Biswajeet Pradhan ◽  
Helmi Z. M. Shafri

AGRIFOR ◽  
2018 ◽  
Vol 17 (1) ◽  
pp. 1
Author(s):  
Agus Sofyan

Remote sensing can be done visually and digitally. one of the advantages of airborne photography data generated by drone (phantom-3) compared to satellite imagery with optical sensitivity is its ability to obtain cloud-free images and freedom of recording time and the displayed area shows clearly defined objects corresponding to land cover. characteristics. To limit the object-based area of this research method applied is Object Based Image Analysis (OBIA).This study aims to classify land cover using highly resolved aerial photography with the help of Object Based Image Analysis (OBIA) technique and calculate the accuracy and accuracy, land cover classification by using Objeck Based Image (OBIA) analysis through examination of field conditions.classifying land cover, the classification includes shrubs, young shrubs, plantations (oil palms), shrubs, mines, open land, roads and water bodies with Accuracy of Overcome 0.86.


Sign in / Sign up

Export Citation Format

Share Document