An automatic optical and SAR image registration method with iterative level set segmentation and SIFT

2015 ◽  
Vol 36 (15) ◽  
pp. 3997-4017 ◽  
Author(s):  
Chuan Xu ◽  
Haigang Sui ◽  
Hongli Li ◽  
Junyi Liu
2016 ◽  
Vol 13 (2) ◽  
pp. 242-246 ◽  
Author(s):  
Fuqiang Liu ◽  
Fukun Bi ◽  
Liang Chen ◽  
Hao Shi ◽  
Wei Liu

2011 ◽  
Vol 48-49 ◽  
pp. 48-51
Author(s):  
Lu Jing Yang ◽  
Wei Hao ◽  
Chong Lun Li

Image registration is a very fundamental and important part in many multi-sensor image based applications. Phase correlation-based image registration method is widely concerned for its small computation amount, strong anti-interference property. However, it can only solve the image registration problem with translational motion. Hence, we proposed a modified phase correlation registration method in the paper. We analyzed the principle of registration, gave the flow chart, and applied the method to the SAR image registration problems with scaling, rotation and translation transformation. Simulation results show that the method can accurately estimate the translation parameters, zoom scale and rotation angle of registrating image relative to the reference image.


Author(s):  
C. Xu ◽  
H. G. Sui ◽  
D. R. Li ◽  
K. M. Sun ◽  
J. Y. Liu

Automatic image registration is a vital yet challenging task, particularly for multi-sensor remote sensing images. Given the diversity of the data, it is unlikely that a single registration algorithm or a single image feature will work satisfactorily for all applications. Focusing on this issue, the mainly contribution of this paper is to propose an automatic optical-to-SAR image registration method using –level and refinement model: Firstly, a multi-level strategy of coarse-to-fine registration is presented, the visual saliency features is used to acquire coarse registration, and then specific area and line features are used to refine the registration result, after that, sub-pixel matching is applied using KNN Graph. Secondly, an iterative strategy that involves adaptive parameter adjustment for re-extracting and re-matching features is presented. Considering the fact that almost all feature-based registration methods rely on feature extraction results, the iterative strategy improve the robustness of feature matching. And all parameters can be automatically and adaptively adjusted in the iterative procedure. Thirdly, a uniform level set segmentation model for optical and SAR images is presented to segment conjugate features, and Voronoi diagram is introduced into Spectral Point Matching (VSPM) to further enhance the matching accuracy between two sets of matching points. Experimental results show that the proposed method can effectively and robustly generate sufficient, reliable point pairs and provide accurate registration.


Author(s):  
C. Xu ◽  
H. G. Sui ◽  
D. R. Li ◽  
K. M. Sun ◽  
J. Y. Liu

Automatic image registration is a vital yet challenging task, particularly for multi-sensor remote sensing images. Given the diversity of the data, it is unlikely that a single registration algorithm or a single image feature will work satisfactorily for all applications. Focusing on this issue, the mainly contribution of this paper is to propose an automatic optical-to-SAR image registration method using –level and refinement model: Firstly, a multi-level strategy of coarse-to-fine registration is presented, the visual saliency features is used to acquire coarse registration, and then specific area and line features are used to refine the registration result, after that, sub-pixel matching is applied using KNN Graph. Secondly, an iterative strategy that involves adaptive parameter adjustment for re-extracting and re-matching features is presented. Considering the fact that almost all feature-based registration methods rely on feature extraction results, the iterative strategy improve the robustness of feature matching. And all parameters can be automatically and adaptively adjusted in the iterative procedure. Thirdly, a uniform level set segmentation model for optical and SAR images is presented to segment conjugate features, and Voronoi diagram is introduced into Spectral Point Matching (VSPM) to further enhance the matching accuracy between two sets of matching points. Experimental results show that the proposed method can effectively and robustly generate sufficient, reliable point pairs and provide accurate registration.


2012 ◽  
Vol 452-453 ◽  
pp. 954-958 ◽  
Author(s):  
Yong Mei Zhang ◽  
Jie Qiong Li

Optical and SAR images have different imaging modes and pixel expression formats, which caused much difficult for image registration. The paper proposes a registration algorithm combined Ratio gradient and Cross Cumulative Residual Entropy (CCRE) aimed at solving the problem of SAR image speckles. Compared with other traditional methods, the experiment results show that the CCRE combined with Ratio operator registration method performs satisfactorily in SAR and optical image registration and provides a significant improvement on the registration accuracy over the other algorithm


Author(s):  
N. Merkle ◽  
R. Müller ◽  
P. Reinartz

Image registration is required for different remote sensing applications, like change detection or image fusion. Since research studies have shown the outstanding absolute geometric accuracy of high resolution radar satellites images like TerraSAR-X, the importance of SAR images as source for geolocation enhancement has increased. Due to this fact, multi-sensor image to image registration of optical and SAR images can be used for the improvement of the absolute geometric processing and accuracy of optical images with TerraSAR-X as reference. In comparison to the common optical and SAR image registration methods the proposed method is a combination of intensity-based and feature-based approaches. The proposed method avoids the direct and often difficult detection of features from the SAR images. SAR-like templates are generated from features detected from the optical image. These templates are used for an intensity-based matching with the SAR image. The results of the matching process are ground control points, which are used for the estimation of translation parameters followed by a subpixel translation of the optical image. The proposed image registration method is tested for two pairs of TerraSAR-X and QuickBird images and one pair of TerraSAR-X andWorldView-2 images of a suburban area. The results show that with the proposed method the geometric accuracy of optical images can be enhanced.


Sign in / Sign up

Export Citation Format

Share Document