high resolution radar
Recently Published Documents


TOTAL DOCUMENTS

430
(FIVE YEARS 68)

H-INDEX

33
(FIVE YEARS 3)

2021 ◽  
Author(s):  
yanyi wang ◽  
Ze Dong ◽  
Junjie Ding ◽  
li ping ◽  
mingxue wang ◽  
...  

Author(s):  
Robert Beinert ◽  
Peter Jung ◽  
Gabriele Steidl ◽  
Tom Szollmann

AbstractIn this work we consider the problem of identification and reconstruction of doubly-dispersive channel operators which are given by finite linear combinations of time-frequency shifts. Such operators arise as time-varying linear systems for example in radar and wireless communications. In particular, for information transmission in highly non-stationary environments the channel needs to be estimated quickly with identification signals of short duration and for vehicular application simultaneous high-resolution radar is desired as well. We consider the time-continuous setting and prove an exact resampling reformulation of the involved channel operator when applied to a trigonometric polynomial as identifier in terms of sparse linear combinations of real-valued atoms. Motivated by recent works of Heckel et al. we present an exact approach for off-the-grid super-resolution which allows to perform the identification with realizable signals having compact support. Then we show how an alternating descent conditional gradient algorithm can be adapted to solve the reformulated problem. Numerical examples demonstrate the performance of this algorithm, in particular in comparison with a simple adaptive grid refinement strategy and an orthogonal matching pursuit algorithm.


Author(s):  
Soyeon Bae ◽  
Jörg Müller ◽  
Bernhard Förster ◽  
Torben Hilmers ◽  
Sophia Hochrein ◽  
...  

2021 ◽  
Vol 13 (15) ◽  
pp. 2890
Author(s):  
Dawit T. Ghebreyesus ◽  
Hatim O. Sharif

Conventionally, in situ rainfall data are used to develop Intensity Duration Frequency (IDF) curves, which are one of the most effective tools for modeling the probability of the occurrence of extreme storm events at different timescales. The rapid recent technological advancements in precipitation sensing, and the finer spatio-temporal resolution of data have made the application of remotely sensed precipitation products more dominant in the field of hydrology. Some recent studies have discussed the potential of remote sensing products for developing IDF curves. This study employs a 19-year NEXRAD Stage-IV high-resolution radar data (2002–2020) to develop IDF curves over the entire state of Texas at a fine spatial resolution. The Annual Maximum Series (AMS) were fitted to four widely used theoretical Extreme Value statistical distributions. Gumble distribution, a unique scenario of the Generalized Extreme Values (GEV) family, was found to be the best model for more than 70% of the state’s area for all storm durations. Validation of the developed IDFs against the operational Atlas 14 IDF values shows a ±27% difference in over 95% of the state for all storm durations. The median of the difference stays between −10% and +10% for all storm durations and for all return periods in the range of (2–100) years. The mean difference ranges from −5% for the 100-year return period to 8% for the 10-year return period for the 24-h storm. Generally, the western and northern regions of the state show an overestimation, while the southern and southcentral regions show an underestimation of the published values.


Author(s):  
Yang Song ◽  
Patrick Broxton ◽  
Mohammad Reza Ehsani ◽  
Ali Behrangi

The combination of snowfall, snow water equivalent (SWE), and precipitation rate measurements from 39 Snow Telemetry (SNOTEL) sites in Alaska are used to assess the performance of various precipitation products from satellites, reanalysis, and rain gauges. Observation of precipitation from two water years (2018-2019) of the high resolution radar/rain gauge data (Stage IV) product was also utilized to add insights into scaling differences between various products. The outcomes were also used to assess two popular methods for rain gauge undercatch correction. It was found that SWE and precipitation measurements at SNOTELs, as well as precipitation estimates based on Stage IV data, are generally consistent and can provide a range in which other products can be assessed. Time-series of snowfall and SWE accumulation suggests that most of the products can capture snowfall events; however, differences exist in their accumulation. Reanalysis products tend to overestimate snow accumulation in the study area, while current combined passive microwave remote sensing products (i.e., IMERG-HQ) underestimate snowfall accumulation. We found that corrections factors applied to rain gauges are effective in improving their undercatch, especially for snowfall. However, no improvement in correlation is seen when correction factors are applied, and rainfall is still estimated better than snowfall. Even though IMERG-HQ has less skill in capturing snowfall than rainfall, analysis using Taylor plots showed that the combined microwave product does have skill in capturing the geographical distribution of snowfall and precipitation accumulation, so bias adjustment might lead to reasonable precipitation estimates. This study demonstrates that other snow properties (e.g., SWE accumulation at the SNOTEL sites) can complement precipitation data to estimate snowfall. In the future, gridded SWE and snow depth data from GlobSnow and Sentinel-1 can be used to assess snowfall and its distribution over broader regions.


Sign in / Sign up

Export Citation Format

Share Document