Fundamental Solutions in the Theory of Thermoelasticity for Solids with Double Porosity

2014 ◽  
Vol 37 (6) ◽  
pp. 727-748 ◽  
Author(s):  
Edoardo Scarpetta ◽  
Merab Svanadze ◽  
Vittorio Zampoli
2018 ◽  
Author(s):  
Pierre Marcasuzaa ◽  
Samuel Pearson ◽  
Karell Bosson ◽  
Laurence Pessoni ◽  
Jean-Charles Dupin ◽  
...  

A hierarchically structured platform was obtained from spontaneous self-assembly of a poly(styrene)-<i>b</i>-poly(vinylbenzylchloride) (PS-<i>b</i>-PVBC) block copolymer (BCP) during breath figure (BF) templating. The BF process using a water/ethanol atmosphere gave a unique double porosity in which hexagonally arranged micron-sized pores were encircled by a secondary population of smaller, nano-sized pores. A third level of structuration was simultaneously introduced between the pores by directed BCP self-assembly to form out-of-the-plane nano-cylinders, offering very rapid bottom-up access to a film with unprecedented triple structure which could be used as a reactive platform for introducing further surface functionality. The surface nano-domains of VBC were exploited as reactive nano-patterns for site-specific chemical functionalization by firstly substituting the exposed chlorine moiety with azide, then “clicking” an alkyne by copper (I) catalyzed azide-alkyne Huisgen cycloaddition (CuAAC). Successful chemical modification was verified by NMR spectroscopy, FTIR spectroscopy, and XPS, with retention of the micro- and nanostructuration confirmed by SEM and AFM respectively. Protonation of the cyclotriazole surface groups triggered a switch in macroscopic behavior from a Cassie-Baxter state to a Wenzel state, highlighting the possibility of producing responsive surfaces with hierarchical structure.


1975 ◽  
Vol 67 (4) ◽  
pp. 787-815 ◽  
Author(s):  
Allen T. Chwang ◽  
T. Yao-Tsu Wu

The present study further explores the fundamental singular solutions for Stokes flow that can be useful for constructing solutions over a wide range of free-stream profiles and body shapes. The primary singularity is the Stokeslet, which is associated with a singular point force embedded in a Stokes flow. From its derivatives other fundamental singularities can be obtained, including rotlets, stresslets, potential doublets and higher-order poles derived from them. For treating interior Stokes-flow problems new fundamental solutions are introduced; they include the Stokeson and its derivatives, called the roton and stresson.These fundamental singularities are employed here to construct exact solutions to a number of exterior and interior Stokes-flow problems for several specific body shapes translating and rotating in a viscous fluid which may itself be providing a primary flow. The different primary flows considered here include the uniform stream, shear flows, parabolic profiles and extensional flows (hyper-bolic profiles), while the body shapes cover prolate spheroids, spheres and circular cylinders. The salient features of these exact solutions (all obtained in closed form) regarding the types of singularities required for the construction of a solution in each specific case, their distribution densities and the range of validity of the solution, which may depend on the characteristic Reynolds numbers and governing geometrical parameters, are discussed.


Sign in / Sign up

Export Citation Format

Share Document