Plane waves in nonlocal thermoelastic solid with voids

2019 ◽  
Vol 42 (5) ◽  
pp. 580-606 ◽  
Author(s):  
Nantu Sarkar ◽  
S. K. Tomar
2013 ◽  
Vol 18 (1) ◽  
pp. 217-234 ◽  
Author(s):  
K. Sharma

The present investigation is concerned with the effect of two temperatures on reflection coefficients in a micropolar thermoelastic solid half space. With two relaxation times, reflection of plane waves impinging obliquely at a plane interface of the micropolar generalized thermoelastic solid half space with two temperatures is investigated. The incident wave is assumed to be striking at the plane surface after propagating through the micropolar generalized thermoelastic solid with two temperatures. Amplitude ratios of the various reflected waves are obtained in closed form and it is found that these are functions of angle of incidence, frequency and are affected by the elastic properties of the media. The effect of two temperatures is shown on these amplitude ratios for a specific model.


2012 ◽  
Vol 28 (4) ◽  
pp. 599-606
Author(s):  
B. Singh ◽  
L. Singh ◽  
S. Deswal

ABSTRACTThe governing equations of a model of rotating generalized thermoelastic diffusion in an isotropic medium with temperature-dependent mechanical properties are formulated in context of Lord-Shulman theory of generalized thermoelasticity. The modulus of elasticity is taken as a linear function of reference temperature. The solution of the governing equations indicates the existence of four coupled plane waves in x-z plane. The reflection of plane waves from the free surface of a rotating temperature-dependent thermoelastic solid half-space with diffusion is considered. The required boundary conditions are satisfied by the appropriate potentials for incident and reflected waves in the half-space to obtain a system of four non-homogeneous equations in the reflection coefficients. The expressions for energy ratios of the reflected waves are also obtained. The reflection coefficients and energy ratios are found to depend upon the angle of incidence, reference temperature, thermodiffusion and rotation parameters. Aluminum material is modeled as the half-space to compute the absolute values of the reflection coefficients and the energy ratios. Effects of temperature dependence and rotation parameters on the reflection coefficients and energy ratios are shown graphically for a certain range of the angle of incidence of the incident plane wave.


2012 ◽  
Vol 42 (3) ◽  
pp. 33-60 ◽  
Author(s):  
Baljeet Singh ◽  
Anand Yadav

Reflection of Plane Waves in a Rotating Transversly Isotropic Magneto-Thermoelastic Solid Half-SpaceThe governing equations of a rotating transversely isotropic magneto-thermoelastic medium are solved to obtain the velocity equation, which indicates the existence of three quasi plane waves. Reflection of these plane waves from a stress-free thermally insulated surface is studied to obtain the reflection coefficients of various reflected waves. The effects of anisotropy, rotation, thermal and magnetic fields are shown graphically on these coefficients.


Sign in / Sign up

Export Citation Format

Share Document