Chemical Absorption of Carbon Dioxide into Aqueous Solution of Potassium Threonate

2010 ◽  
Vol 45 (4) ◽  
pp. 497-507 ◽  
Author(s):  
Kyu-Suk Hwang ◽  
Dae-Won Park ◽  
Kwang-Joong Oh ◽  
Seong-Soo Kim ◽  
Sang-Wook Park
2019 ◽  
Author(s):  
Javier Oller ◽  
David A. Sáez ◽  
Esteban Vöhringer-Martinez

<div><div><div><p>Local reactivity descriptors such as atom condensed Fukui functions are promising computational tools to study chemical reactivity at specific sites within a molecule. Their applications have been mainly focused on isolated molecules in their most stable conformation without considering the effects of the surroundings. Here, we propose to combine QM/MM Born-Oppenheimer molecular dynamics simulations to obtain the microstates (configurations) of a molecular system using different representations of the molecular environment and calculate Boltzmann weighted atom condensed local reac- tivity descriptors based on conceptual DFT. Our approach takes the conformational fluctuations of the molecular system and the polarization of its electron density by the environment into account allowing us to analyze the effect of changes in the molecular environment on reactivity. In this contribution, we apply the method mentioned above to the catalytic fixation of carbon dioxide by crotonyl-CoA carboxylase/reductase and study if the enzyme alters the reactivity of its substrate compared to an aqueous solution. Our main result is that the protein en- vironment activates the substrate by the elimination of solute-solvent hydrogen bonds from aqueous solution in the two elementary steps of the reaction mechanism: the nucleophilic attack of a hydride anion from NADPH on the α, β unsaturated thioester and the electrophilic attack of carbon dioxide on the formed enolate species.</p></div></div></div>


1986 ◽  
Vol 39 (5) ◽  
pp. 757 ◽  
Author(s):  
DN Furlong ◽  
D Wells ◽  
WHF Sasse

The photooxidation of ethylenediaminetetraacetic acid ( edta ) and related glycine derivatives, at Pt/TiO2/aqueous solution interfaces, has been monitored via the production of hydrogen and carbon dioxide. Yields are consistent with the exhaustive oxidation of methoxycarbonyl groups and the rate varied with the number and distribution of such groups. A photooxidation pathway is proposed which involves the oxidation of intermediate carbonium ions. Plausible molecular intermediates, such as formic acid and formaldehyde in the case of edta , have been shown in separate experiments to be photooxidized according to the proposed pathway. The maximum rate of oxidation for each donor depends on its oxidation potential and its tendency to adsorb on TiO2 surfaces. Desorption due to pH increase, as well as consumption of the donor, causes the rate to decline rapidly with illumination time. Acetic and malonic acids gave some hydrogen but underwent mainly (> c. 80%) photo-Kolbe decarboxylation to yield carbon dioxide and methane. By contrast the oxidation of oxomalonic, pyruvic and lactic acids proceeded mainly via a H2 producing pathway similar to that established for edta. The oxidation of pyruvic and lactic acids ceased at a yield of one mole of CO2 per mole of acid.


2021 ◽  
Vol 110 ◽  
pp. 103415
Author(s):  
Hassan A. Salih ◽  
Jeewan Pokhrel ◽  
Donald Reinalda ◽  
Inas AlNashf ◽  
Maryam Khaleel ◽  
...  

RSC Advances ◽  
2016 ◽  
Vol 6 (67) ◽  
pp. 62612-62623 ◽  
Author(s):  
Mohammad Ehsan Hamzehie ◽  
Hesam Najibi

Aqueous solutions of potassium glycinate and mixtures with 2-amino-2-methyl-1-propanol (AMP) are investigated as new absorbents for carbon dioxide absorption.


2008 ◽  
Vol 43 (11-12) ◽  
pp. 3003-3019 ◽  
Author(s):  
Sang-Wook Park ◽  
Young-Sik Son ◽  
Dae-Won Park ◽  
Kwang-Joong Oh

Sign in / Sign up

Export Citation Format

Share Document