Estimation methods for the probability density function and the cumulative distribution function of the Pareto-Rayleigh distribution

Statistics ◽  
2019 ◽  
Vol 54 (1) ◽  
pp. 135-151
Author(s):  
Maleki Jebeli ◽  
E. Deiri
1969 ◽  
Vol 6 (02) ◽  
pp. 442-448
Author(s):  
Lionel Weiss

Suppose Q 1 ⋆, … Q n ⋆ are independent, identically distributed random variables, each with probability density function f(x), cumulative distribution function F(x), where F(1) – F(0) = 1, f(x) is continuous in the open interval (0, 1) and continuous on the right at x = 0 and on the left at x = 1, and there exists a positive C such that f(x) > C for all x in (0, l). f(0) is defined as f(0+), f(1) is defined as f(1–).


2021 ◽  
pp. 35-53
Author(s):  
Johan Fellman

Analyses of income data are often based on assumptions concerning theoretical distributions. In this study, we apply statistical analyses, but ignore specific distribution models. The main income data sets considered in this study are taxable income in Finland (2009) and household income in Australia (1967-1968). Our intention is to compare statistical analyses performed without assumptions of the theoretical models with earlier results based on specific models. We have presented the central objects, probability density function, cumulative distribution function, the Lorenz curve, the derivative of the Lorenz curve, the Gini index and the Pietra index. The trapezium rule, Simpson´s rule, the regression model and the difference quotients yield comparable results for the Finnish data, but for the Australian data the differences are marked. For the Australian data, the discrepancies are caused by limited data. JEL classification numbers: D31, D63, E64. Keywords: Cumulative distribution function, Probability density function, Mean, quantiles, Lorenz curve, Gini coefficient, Pietra index, Robin Hood index, Trapezium rule, Simpson´s rule, Regression models, Difference quotients, Derivative of Lorenz curve


2012 ◽  
Vol 87 (1) ◽  
pp. 115-119 ◽  
Author(s):  
ROBERT STEWART ◽  
HONG ZHANG

AbstractGiven a rectangle containing uniformly distributed random points, how far are the points from the rectangle’s centre? In this paper we provide closed-form expressions for the cumulative distribution function and probability density function that characterise the distance. An expression for the average distance to the centre of the rectangle is also provided.


2018 ◽  
Vol 14 (1) ◽  
pp. 7431-7438
Author(s):  
Nasr Ibrahim Rashwan

In this paper, the probability density function and the cumulative distribution function of the rth order statistic arising from independent nonidentically distributed (INID) Lomax, exponential Lomax and exponential Pareto variables are presented. The moments of order statistics from INID Lomax, exponential lomax and exponential Pareto were derived using the technique established by Barakat and Abdelkader. Also, numerical examples are given.


Author(s):  
Oleg Gradov ◽  
Eugene Adamovich ◽  
Serge Pankratov

Evolution of bioacoustic correlometers: from setups for analysis of probability density function (PDF), cumulative distribution function (CDF), [spectral] entropy of signal (SE) & quality of masking noise (QMN) to palmtop-like pocket devices Novel references:


1969 ◽  
Vol 6 (2) ◽  
pp. 442-448 ◽  
Author(s):  
Lionel Weiss

Suppose Q1⋆, … Qn⋆ are independent, identically distributed random variables, each with probability density function f(x), cumulative distribution function F(x), where F(1) – F(0) = 1, f(x) is continuous in the open interval (0, 1) and continuous on the right at x = 0 and on the left at x = 1, and there exists a positive C such that f(x) > C for all x in (0, l). f(0) is defined as f(0+), f(1) is defined as f(1–).


2016 ◽  
Vol 12 (2) ◽  
pp. 49-65 ◽  
Author(s):  
S. Erden ◽  
M. Z. Sarikaya ◽  
N. Çelik

Abstract We establish generalized pre-Grüss inequality for local fractional integrals. Then, we obtain some inequalities involving generalized expectation, p−moment, variance and cumulative distribution function of random variable whose probability density function is bounded. Finally, some applications for generalized Ostrowski-Grüss inequality in numerical integration are given.


Author(s):  
Robert J Marks II

In this Chapter, we present application of Fourier analysis to probability, random variables and stochastic processes [1089, 1097, 1387, 1329]. Arandom variable, X, is the assignment of a number to the outcome of a random experiment. We can, for example, flip a coin and assign an outcome of a heads as X = 1 and a tails X = 0. Often the number is equated to the numerical outcome of the experiment, such as the number of dots on the face of a rolled die or the measurement of a voltage in a noisy circuit. The cumulative distribution function is defined by FX(x) = Pr[X ≤ x]. (4.1) The probability density function is the derivative fX(x) = d /dxFX(x). Our treatment of random variables focuses on use of Fourier analysis. Due to this viewpoint, the development we use is unconventional and begins immediately in the next section with discussion of properties of the probability density function.


Author(s):  
Pooja Singh

Exponential functions have been extended to Hypergeometric functions. There are many functions which can be expressed in hypergeometric function by using its analytic properties. In this paper, we will apply a unified approach to the probability density function and corresponding cumulative distribution function of the noncentral chi square variate to extract and derive hypergeometric functions.


2020 ◽  
Vol 70 (5) ◽  
pp. 1211-1230
Author(s):  
Abdus Saboor ◽  
Hassan S. Bakouch ◽  
Fernando A. Moala ◽  
Sheraz Hussain

AbstractIn this paper, a bivariate extension of exponentiated Fréchet distribution is introduced, namely a bivariate exponentiated Fréchet (BvEF) distribution whose marginals are univariate exponentiated Fréchet distribution. Several properties of the proposed distribution are discussed, such as the joint survival function, joint probability density function, marginal probability density function, conditional probability density function, moments, marginal and bivariate moment generating functions. Moreover, the proposed distribution is obtained by the Marshall-Olkin survival copula. Estimation of the parameters is investigated by the maximum likelihood with the observed information matrix. In addition to the maximum likelihood estimation method, we consider the Bayesian inference and least square estimation and compare these three methodologies for the BvEF. A simulation study is carried out to compare the performance of the estimators by the presented estimation methods. The proposed bivariate distribution with other related bivariate distributions are fitted to a real-life paired data set. It is shown that, the BvEF distribution has a superior performance among the compared distributions using several tests of goodness–of–fit.


Sign in / Sign up

Export Citation Format

Share Document