Effect of orientation on low-cycle fatigue behaviour of single crystal superalloys at 900°C

2019 ◽  
Vol 35 (7) ◽  
pp. 767-774 ◽  
Author(s):  
Peng Li ◽  
Bomou Zhou ◽  
Yizhou Zhou ◽  
Zhefeng Zhang
2014 ◽  
Vol 891-892 ◽  
pp. 416-421 ◽  
Author(s):  
Mikael Segersäll ◽  
Johan Moverare ◽  
Daniel Leidermark ◽  
Kjell Simonsson

In this study, low-cycle fatigue (LCF) tests at 500 °C in the <001>, <011> and <111> directions have been performed for the Ni-based single-crystal superalloy MD2. All tests were carried out in strain control with Rε=-1. The <001> direction has the lowest stiffness of the three directions and also shows the best fatigue properties in this study followed by the <011> and <111> directions, respectively. It is well recognised that Ni-based single-crystal superalloys show a tension/compression asymmetry in yield strength and this study shows that a tension/compression asymmetry also is prevalent during LCF conditions. At mid-life, the <001> direction generally has a higher stress in tension than in compression, while the opposite is true for the <011> direction. For the <111> direction the asymmetry is found to be strain range dependent. The <011> and <111> directions show a cyclic hardening behaviour when comparing cyclic stress-strain curves with monotonic stress-strain curves. In addition, the <011> and <111> directions show a serrated yielding behaviour for a number of cycles while the yielding of the <001> direction is more stable.


Fatigue '96 ◽  
1996 ◽  
pp. 807-812
Author(s):  
W. Wedell ◽  
U. Chrzanowski ◽  
H. Frenz ◽  
J. Ziebs ◽  
H. Klingelhöffer

1974 ◽  
Vol 188 (1) ◽  
pp. 321-328 ◽  
Author(s):  
W. J. Evans ◽  
G. P. Tilly

The low-cycle fatigue characteristics of an 11 per cent chromium steel, two nickel alloys and two titanium alloys have been studied in the range 20° to 500°C. For repeated-tension stress tests on all the materials, there was a sharp break in the stress-endurance curve between 103 and 104 cycles. The high stress failures were attributed to cyclic creep contributing to the development of internal cavities. At lower stresses, failures occurred through the growth of fatigue cracks initiated at the material surface. The whole fatigue curve could be represented by an expression developed from linear damage assumptions. Data for different temperatures and types of stress concentration were correlated by expressing stress as a fraction of the static strength. Repeated-tensile strain cycling data were represented on a stress-endurance diagram and it was shown that they correlated with push-pull stress cycles at high stresses and repeated-tension at low stresses. In general, the compressive phase tended to accentuate cyclic creep so that ductile failures occurred at proportionally lower stresses. Changes in frequency from 1 to 100 cycle/min were shown to have no significant effect on low-cycle fatigue behaviour.


1982 ◽  
Vol 68 (3) ◽  
pp. 471-476 ◽  
Author(s):  
Toshinori NAKAMURA ◽  
Masatake TOMINAGA ◽  
Hirokazu MURASE ◽  
Yukio NISHIYAMA

2018 ◽  
Vol 157 ◽  
pp. 05013 ◽  
Author(s):  
Peter Kopas ◽  
Milan Sága ◽  
František Nový ◽  
Bohuš Leitner

The article presents the results of research on low cycle fatigue strength of laser welded joints vs. non-welded material of high-strength steel DOMEX 700 MC. The tests were performed under load controlled using the total strain amplitude ɛac. The operating principle of the special electro-mechanic fatigue testing equipment with a suitable clamping system was working on 35 Hz frequency. Fatigue life analysis was conducted based on the Manson-Coffin-Basquin equation, which made it possible to determine fatigue parameters. Studies have shown differences in the fatigue life of original specimens and laser welded joints analysed, where laser welded joints showed lower fatigue resistance. In this article a numerical analysis of stresses generated in bending fatigue specimens has been performed employing the commercially available FEM-program ADINA.


Sign in / Sign up

Export Citation Format

Share Document