DROUGHT, WIND, AND BLOWING DUST ON THE SOUTHERN HIGH PLAINS OF THE UNITED STATES

1993 ◽  
Vol 14 (1) ◽  
pp. 56-67 ◽  
Author(s):  
Jeffrey A. Lee ◽  
Kenneth A. Wigner ◽  
James M. Gregory
2003 ◽  
Vol 18 (3) ◽  
pp. 502-519 ◽  
Author(s):  
Brian A. Klimowski ◽  
Matthew J. Bunkers ◽  
Mark R. Hjelmfelt ◽  
Josiah N. Covert

2019 ◽  
Vol 32 (5) ◽  
pp. 1591-1606 ◽  
Author(s):  
Alex M. Haberlie ◽  
Walker S. Ashley

Abstract This research applies an automated mesoscale convective system (MCS) segmentation, classification, and tracking approach to composite radar reflectivity mosaic images that cover the contiguous United States (CONUS) and span a relatively long study period of 22 years (1996–2017). These data afford a novel assessment of the seasonal and interannual variability of MCSs. Additionally, hourly precipitation data from 16 of those years (2002–17) are used to systematically examine rainfall associated with radar-derived MCS events. The attributes and occurrence of MCSs that pass over portions of the CONUS east of the Continental Divide (ECONUS), as well as five author-defined subregions—North Plains, High Plains, Corn Belt, Northeast, and Mid-South—are also examined. The results illustrate two preferred regions for MCS activity in the ECONUS: 1) the Mid-South and Gulf Coast and 2) the Central Plains and Midwest. MCS occurrence and MCS rainfall display a marked seasonal cycle, with most of the regions experiencing these events primarily during the warm season (May–August). Additionally, MCS rainfall was responsible for over 50% of annual and seasonal rainfall for many locations in the ECONUS. Of particular importance, the majority of warm-season rainfall for regions with high agricultural land use (Corn Belt) and important aquifer recharge properties (High Plains) is attributable to MCSs. These results reaffirm that MCSs are a significant aspect of the ECONUS hydroclimate.


2006 ◽  
Vol 45 (8) ◽  
pp. 1141-1155 ◽  
Author(s):  
Stanley A. Changnon ◽  
David Changnon ◽  
Thomas R. Karl

Abstract A climatological analysis of snowstorms across the contiguous United States, based on data from 1222 weather stations with data during 1901–2001, defined the spatial and temporal features. The average annual incidence of events creating 15.2 cm or more in 1 or 2 days, which are termed as snowstorms, exhibits great spatial variability. The pattern is latitudinal across most of the eastern half of the United States, averaging 0.1 storm (1 storm per 10 years) in the Deep South, increasing to 2 storms along the Canadian border. This pattern is interrupted by higher averages downwind of the Great Lakes and in the Appalachian Mountains. In the western third of the United States where snow falls, lower-elevation sites average 0.1–2 storms per year, but averages are much higher in the Cascade Range and Rocky Mountains, where 5–30 storms occur per year. Most areas of the United States have had years without snowstorms, but the annual minima are 1 or more storms in high-elevation areas of the West and Northeast. The pattern of annual maxima of storms is similar to the average pattern. The temporal distribution of snowstorms exhibited wide fluctuations during 1901–2000, with downward 100-yr trends in the lower Midwest, South, and West Coast. Upward trends occurred in the upper Midwest, East, and Northeast, and the national trend for 1901–2000 was upward, corresponding to trends in strong cyclonic activity. The peak periods of storm activity in the United States occurred during 1911–20 and 1971–80, and the lowest frequency was in 1931–40. Snowstorms first occur in September in the Rockies, in October in the high plains, in November across most of the United States, and in December in the Deep South. The month with the season’s last storms is December in the South and then shifts northward, with April the last month of snowstorms across most of the United States. Storms occur as late as May and June in the Rockies and Cascades. Snowstorms are most frequent in December downwind of the Great Lakes, with the peak of activity in January for most other areas of the United States.


Author(s):  
J. C. Simroth ◽  
D. U. Thomson ◽  
E. F. Schwandt ◽  
S. J. Bartle ◽  
C. K. Larson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document