Discrete element analysis for shear band modes of granular materials in triaxial tests

2016 ◽  
Vol 35 (3) ◽  
pp. 277-290 ◽  
Author(s):  
Hongxiang Tang ◽  
Xing Zhang ◽  
Shunying Ji
Materials ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3347
Author(s):  
Chao Liu ◽  
Liufeng Pan ◽  
Fei Wang ◽  
Zixin Zhang ◽  
Jie Cui ◽  
...  

Soil disturbance has always been the major concern in shield tunneling activity. This paper presents the investigation on the micro-scale responses of the soils during shield tunnel excavation in sandy-cobble stratum. The code paraEllip3d is employed in discrete element method (DEM) analysis in which the soils are mimicked as an assembly of ellipsoids. Triaxial tests on the micro-scale responses of cobbles are carried out using the materials sampled from the tunnel face during construction period, and corresponding DEM simulations are performed to calibrate the micro parameters for the ellipsoids. On this basis, the face instability process during the shield tunneling in cobbles is studied using 1 g model test as well as corresponding DEM simulation. The micro-scale responses of cobbles are investigated by triaxial test as well as corresponding DEM simulations. Multiple material responses are discussed in the DEM simulations, including the stress–strain relationship, the contact distribution, and the force chain evolution in the elementary and model test. Finally, the mechanism of tunnel face instability in cobbles are discussed on the basis of aforementioned investigations.


2008 ◽  
Vol 48 (4) ◽  
pp. 511-530 ◽  
Author(s):  
CATHERINE O'SULLIVAN ◽  
LIANG CUI ◽  
STUART C. O'NEILL

2021 ◽  
Vol 9 (3) ◽  
pp. 348
Author(s):  
Xue Long ◽  
Lu Liu ◽  
Shewen Liu ◽  
Shunying Ji

In cold regions, ice pressure poses a serious threat to the safe operation of ship hulls and fixed offshore platforms. In this study, a discrete element method (DEM) with bonded particles was adapted to simulate the generation and distribution of local ice pressures during the interaction between level ice and vertical structures. The strength and failure mode of simulated sea ice under uniaxial compression were consistent with the experimental results, which verifies the accuracy of the discrete element parameters. The crushing process of sea ice acting on the vertical structure simulated by the DEM was compared with the field test. The distribution of ice pressure on the contact surface was calculated, and it was found that the local ice pressure was much greater than the global ice pressure. The high-pressure zones in sea ice are mainly caused by its simultaneous destruction, and these zones are primarily distributed near the midline of the contact area of sea ice and the structure. The contact area and loading rate are the two main factors affecting the high-pressure zones. The maximum local and global ice pressures decrease with an increase in the contact area. The influence of the loading rate on the local ice pressure is caused by the change in the sea ice failure mode. When the loading rate is low, ductile failure of sea ice occurs, and the ice pressure increases with the increase in the loading rate. When the loading rate is high, brittle failure of sea ice occurs, and the ice pressure decreases with an increase in the loading rate. This DEM study of sea ice can reasonably predict the distribution of high-pressure zones on marine structures and provide a reference for the anti-ice performance design of marine structures.


Sign in / Sign up

Export Citation Format

Share Document