The role of diatoms and diatomists in environmental and earth sciences

Boreas ◽  
2003 ◽  
Vol 32 (2) ◽  
pp. 446-446
Author(s):  
URVE MILLER
Keyword(s):  
GSA Today ◽  
2003 ◽  
Vol 13 (3) ◽  
pp. 27
Author(s):  
W.G. Ernst ◽  
G. Heiken ◽  
Susan M. Landon ◽  
P. Patrick Leahy ◽  
Eldridge Moores
Keyword(s):  

Elements ◽  
2019 ◽  
Vol 15 (4) ◽  
pp. 229-234 ◽  
Author(s):  
Patrick J. Frings ◽  
Heather L. Buss

Weathering is the chemical and physical alteration of rock at the surface of the Earth, but its importance is felt well beyond the rock itself. The repercussions of weathering echo throughout the Earth sciences, from ecology to climatology, from geomorphology to geochemistry. This article outlines how weathering interacts with various geoscience disciplines across a huge range of scales, both spatial and temporal. It traces the evolution of scientific thinking about weathering and man's impact on weathering itself—for better and for worse. Future computational, conceptual and methodological advances are set to cement weathering's status as a central process in the Earth sciences.


2014 ◽  
Vol 51 (3) ◽  
pp. xvii-xxxi
Author(s):  
Gordon F. West ◽  
Ron M. Farquhar ◽  
George D. Garland ◽  
Henry C. Halls ◽  
Lawrence W. Morley ◽  
...  

Fifty years ago, the world’s Earth Scientists experienced the so-called “Revolution in the Earth Sciences”. In the decade from 1960 to 1970, a massive convergence took place from many diverse and contradictory theories about the tectonic processes operating on Earth (then loosely called “mountain building”) to a single widely accepted paradigm now called Plate Tectonics. A major player in leading the international “Revolution” was Canadian geophysicist J. Tuzo Wilson. This tribute reviews how he helped define and promote the Plate Tectonic paradigm, and also, from 1946 to 1967, how he led a rapid expansion of the role of geophysics in Canadian and international earth science. Wilson was a controversial figure before and during the “Revolution”, but his influence was large. It was not coincidental that earth science research in Canada grew by 1964 to the point where the National Research Council of Canada could add the Canadian Journal of Earth Sciences to its group of Canadian research journals.


Episodes ◽  
2000 ◽  
Vol 23 (3) ◽  
pp. 155-162 ◽  
Author(s):  
Umberto G. Cordani
Keyword(s):  

2015 ◽  
Vol 7 (3) ◽  
pp. 2563-2662 ◽  
Author(s):  
L. Jouniaux ◽  
F. Zyserman

Abstract. The seismo-electromagnetic method (SEM) is used for non-invasive subsurface exploration. It shows interesting results for detecting fluids such as water, ice, oil, gas, CO2, and also to better characterise the subsurface in terms of porosity, permeability, and fractures. However, a limitation of this method is the low level of the induced signals. We first describe SEM's theoretical background, and the role of some key parameters. We then detail recent studies on SEM, through theoretical and numerical developments, and through field and laboratory observations, to show that this method can bring advantages compared to classical geophysical methods.


2007 ◽  
Vol 40 (4) ◽  
pp. 491-504 ◽  
Author(s):  
FABIEN LOCHER

AbstractThe 1830s and 1840s witnessed a European movement to accumulate data about the terrestrial environment, enterprises including the German and British geomagnetic crusades. This movement was not limited to geomagnetic studies but notably included an important meteorological component. By focusing on observation practices in sedentary and expeditionary contexts, this paper shows how the developing fields of geomagnetism and meteorology were then intimately interlinked. It analyses the circulation and cross-connections of the practices and discourses shared by these two research fields. Departing from a Humboldtian historiography, the paper especially stresses the role of Adolphe Quetelet, director of the Brussels Observatory, whose importance in the development of the earth sciences has until now been largely neglected. It reassesses the involvement of the French scientific community in the British and German geomagnetic crusades, moving beyond the well-known account of Arago's opposition to these undertakings. It is hoped thereby to contribute to a better historical understanding of the renewal of the earth sciences in the second quarter of the nineteenth century.


Sign in / Sign up

Export Citation Format

Share Document