Development of medium-to-high carbon hot-rolled steel strip on a thin slab casting direct strip production complex

2017 ◽  
Vol 45 (7) ◽  
pp. 603-610 ◽  
Author(s):  
Tihe Zhou ◽  
Peng Zhang ◽  
Kate Kuuskman ◽  
Erminio Cerilli ◽  
Sang-Hyun Cho ◽  
...  
2012 ◽  
Vol 706-709 ◽  
pp. 2278-2283
Author(s):  
Carl Peter Reip ◽  
Christian Klinkenberg ◽  
Long Chang Tong ◽  
Pavel Hora

Industrial thin slab casting and direct rolling processing started in 1989 with the world’s first CSP® plant at Crawfordsville (USA). Since this time CSP® and competing thin slab casting and direct rolling concepts have been developed to a standard process for hot strip production [1]. Typical features of the CSP® process are the homogeneous structural and mechanical properties all along the strip. Direct hot rolling of thin slabs may be followed by a well defined cooling pattern to produce hot strip from high strength multiphase steel, like dualphase (DP) grades, on the runout table. These steel grades are characterized by a favorable combination of strength and ductility based on hard martensitic particles embedded in a ductile ferritic matrix. This paper highlights the mechanical properties of hot rolled DP steel from CSP® production. To this purpose, multiple tests and modeling have been applied to determine e.g. r-values, forming limit curves and yield locus. In addition, forming simulation as well as laboratory and industrial deep drawing tests have been performed.


2010 ◽  
Vol 654-656 ◽  
pp. 230-233
Author(s):  
Guang Qiang Li ◽  
Ai Da Xiao ◽  
De Zhi Wen ◽  
Guo Hua Jiao ◽  
Bai Ping Zheng ◽  
...  

Ti micro-alloyed high strength hot rolled steel was developed in Valin Lianyuan Steel in the CSP line. The cleanliness of liquid steel was good enough for thin slab casting after LF refining. The mould powder was adjusted for stabilizing the heat flux of thin slab continuous casting mould. Homogeneous microstructure consisting of ferrite and pearlite was obtained in the hot rolled steel plates by the improving of rolling process. The nano-scale precipitates of Ti(C, N) and Nb(C, N) is the main strengthening mechanism. The yield strength of developed hot rolled plate is higher than 660 MPa and the tension strength is 760 MPa. The ductile-brittle transition temperature is below -60 degree Celsius. The developed Ti alloyed steel with designed composition fulfils the requirements of 600 MPa grade steel for engineering machinery.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 706
Author(s):  
Xinglong Feng ◽  
Xianwen Gao ◽  
Ling Luo

It is important to accurately classify the defects in hot rolled steel strip since the detection of defects in hot rolled steel strip is closely related to the quality of the final product. The lack of actual hot-rolled strip defect data sets currently limits further research on the classification of hot-rolled strip defects to some extent. In real production, the convolutional neural network (CNN)-based algorithm has some difficulties, for example, the algorithm is not particularly accurate in classifying some uncommon defects. Therefore, further research is needed on how to apply deep learning to the actual detection of defects on the surface of hot rolled steel strip. In this paper, we proposed a hot rolled steel strip defect dataset called Xsteel surface defect dataset (X-SDD) which contains seven typical types of hot rolled strip defects with a total of 1360 defect images. Compared with the six defect types of the commonly used NEU surface defect database (NEU-CLS), our proposed X-SDD contains more types. Then, we adopt the newly proposed RepVGG algorithm and combine it with the spatial attention (SA) mechanism to verify the effect on the X-SDD. Finally, we apply multiple algorithms to test on our proposed X-SDD to provide the corresponding benchmarks. The test results show that our algorithm achieves an accuracy of 95.10% on the testset, which exceeds other comparable algorithms by a large margin. Meanwhile, our algorithm achieves the best results in Macro-Precision, Macro-Recall and Macro-F1-score metrics.


2021 ◽  
pp. 251-260
Author(s):  
Virginia Riego del Castillo ◽  
Lidia Sánchez-González ◽  
Alexis Gutiérrez-Fernández

2008 ◽  
Vol 79 (12) ◽  
pp. 938-946 ◽  
Author(s):  
K.V. Jondhale ◽  
M.A. Wells ◽  
M. Militzer ◽  
V. Prodanovic

Sign in / Sign up

Export Citation Format

Share Document