strip surface
Recently Published Documents


TOTAL DOCUMENTS

158
(FIVE YEARS 31)

H-INDEX

11
(FIVE YEARS 2)

2022 ◽  
Vol 136 ◽  
pp. 103585
Author(s):  
Zhuxi MA ◽  
Yibo Li ◽  
Minghui Huang ◽  
Qianbin Huang ◽  
Jie Cheng ◽  
...  

2021 ◽  
Vol 2082 (1) ◽  
pp. 012016
Author(s):  
Xinglong Feng ◽  
Xianwen Gao ◽  
Ling Luo

Abstract A new Vision Transformer(ViT) model is proposed for the classification of surface defects in hot rolled strip, optimizing the poor learning ability of the original Vision Transformer model on smaller datasets. Firstly, each module of ViT and its characteristics are analyzed; Secondly, inspired by the deep learning model VGGNet, the multilayer fully connected layer in VGGNet is introduced into the ViT model to increase its learning capability; Finally, by performing on the X-SDD hot-rolled steel strip surface defect dataset. The effect of the improved algorithm is verified by comparison experiments on the X-SDD hot-rolled strip steel surface defect dataset. The test results show that the improved algorithm achieves better results than the original model in terms of accuracy, recall, F1 score, etc. Among them, the accuracy of the improved algorithm on the test set is 5.64% higher than ViT-Base and 2.64% higher than ViT-Huge; the accuracy is 4.68% and 1.36% higher than both of them, respectively.


Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7264
Author(s):  
Qiwu Luo ◽  
Weiqiang Jiang ◽  
Jiaojiao Su ◽  
Jiaqiu Ai ◽  
Chunhua Yang

Steel strip acts as a fundamental material for the steel industry. Surface defects threaten the steel quality and cause substantial economic and reputation losses. Roll marks, always occurring periodically in a large area, are put on the top of the list of the most serious defects by steel mills. Essentially, the online roll mark detection is a tiny target inspection task in high-resolution images captured under harsh environment. In this paper, a novel method—namely, Smoothing Complete Feature Pyramid Networks (SCFPN)—is proposed for the above focused task. In particular, the concept of complete intersection over union (CIoU) is applied in feature pyramid networks to obtain faster fitting speed and higher prediction accuracy by suppressing the vanishing gradient in training process. Furthermore, label smoothing is employed to promote the generalization ability of model. In view of lack of public surface image database of steel strips, a raw defect database of hot-rolled steel strip surface, CSU_STEEL, is opened for the first time. Experiments on two public databases (DeepPCB and NEU) and one fresh texture database (CSU_STEEL) indicate that our SCFPN yields more competitive results than several prestigious networks—including Faster R-CNN, SSD, YOLOv3, YOLOv4, FPN, DIN, DDN, and CFPN.


2021 ◽  
Vol 11 (19) ◽  
pp. 8945
Author(s):  
Yanghuan Xu ◽  
Dongcheng Wang ◽  
Bowei Duan ◽  
Huaxin Yu ◽  
Hongmin Liu

Surface defect automatic detection has great significance for copper strip production. The traditional machine vision for surface defect automatic detection of copper strip needs artificial feature design, which has a long cycle, and poor ability of versatility and robustness. However, deep learning can effectively solve these problems. Therefore, based on the deep convolution neural network and the transfer learning strategy, an intelligent recognition model of surface defects of copper strip is established in this paper. Firstly, the defects were classified in accordance with the mechanism and morphology, and the surface defect dataset of copper strip was established by comprehensively adopting image acquisition and image augmentation. Then, a two-class discrimination model was established to achieve the accurate discrimination of perfect and defect images. On this basis, four CNN models were adopted for the recognition of defect images. Among these models, the EfficientNet model through transfer learning strategy had the best comprehensive performance with a recognition accuracy rate of 93.05%. Finally, the interpretability and deficiency of the model were analysed by the class activation map and confusion matrix, which point toward the direction of further optimization for future research.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Hao Wu ◽  
Quanquan Lv

In the production process of steel strips, the detection of surface defects is very important. However, traditional methods of defect detection bring problems of low detection accuracy and dependence on subjective judgment. In this study, the surface defects of steel strips are detected by a classic convolutional neural network method that is improved by the use of a transfer learning model. This model has the advantages of shorter training time, faster convergence, and more accurate weight parameters. The transfer learning model obtained through experiments secures better results in defect detection than the classic convolutional neural network method, as its accuracy of training and testing has reached about 98%. Finally, a model based on a full convolutional neural network (FCN) is proposed for segmenting the defective areas of steel strips.


Measurement ◽  
2021 ◽  
pp. 109454
Author(s):  
Xupeng Kou ◽  
Shuaijun Liu ◽  
Kaiqiang Cheng ◽  
Ye Qian
Keyword(s):  

Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 706
Author(s):  
Xinglong Feng ◽  
Xianwen Gao ◽  
Ling Luo

It is important to accurately classify the defects in hot rolled steel strip since the detection of defects in hot rolled steel strip is closely related to the quality of the final product. The lack of actual hot-rolled strip defect data sets currently limits further research on the classification of hot-rolled strip defects to some extent. In real production, the convolutional neural network (CNN)-based algorithm has some difficulties, for example, the algorithm is not particularly accurate in classifying some uncommon defects. Therefore, further research is needed on how to apply deep learning to the actual detection of defects on the surface of hot rolled steel strip. In this paper, we proposed a hot rolled steel strip defect dataset called Xsteel surface defect dataset (X-SDD) which contains seven typical types of hot rolled strip defects with a total of 1360 defect images. Compared with the six defect types of the commonly used NEU surface defect database (NEU-CLS), our proposed X-SDD contains more types. Then, we adopt the newly proposed RepVGG algorithm and combine it with the spatial attention (SA) mechanism to verify the effect on the X-SDD. Finally, we apply multiple algorithms to test on our proposed X-SDD to provide the corresponding benchmarks. The test results show that our algorithm achieves an accuracy of 95.10% on the testset, which exceeds other comparable algorithms by a large margin. Meanwhile, our algorithm achieves the best results in Macro-Precision, Macro-Recall and Macro-F1-score metrics.


2021 ◽  
Vol 8 (2) ◽  
pp. 788-798
Author(s):  
Viktor Gribniak ◽  
Aleksandr K Arnautov ◽  
Arvydas Rimkus

Abstract The elegant stress-ribbon systems are efficient in pedestrian bridges and long-span roofs. Numerous studies defined corrosion of the steel ribbons as the main drawback of these structures. Unidirectional carbon fiber-reinforced polymer (CFRP) is a promising alternative to steel because of lightweight, high strength, and excellent corrosion and fatigue resistance. However, the application of CFRP materials faced severe problems due to the construction of the anchorage joints, which must resist tremendous axial forces acting in the stress-ribbons. Conventional techniques, suitable for the typical design of the strips made from anisotropic material such as steel, are not useful for СFRP strips. The anisotropy of СFRP makes it vulnerable to loading in a direction perpendicular to the fibers, shear failure of the matrix, and local stress concentrations. This manuscript proposes a new design methodology of the gripping system suitable for the anchorage of flat strips made from fiber-reinforced polymers. The natural shape of a logarithmic spiral Nautilus shell describes the geometry of the contact surface. The continuous smoothly increasing bond stresses due to friction between the anchorage block and the CFRP strip surface enable the gripping system to avoid stress concentrations. The 3D-printed polymeric prototype mechanical tests proved the proposed frictional anchorage system efficiency and validated the developed analytical model.


2021 ◽  
Vol 29 (4) ◽  
pp. 701-709
Author(s):  
Qin-wei FU ◽  
◽  
Xuan DU ◽  
Yan ZHANG ◽  
Na LÜ ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document