A new harmony search algorithm for solving mixed–discrete engineering optimization problems

2011 ◽  
Vol 43 (5) ◽  
pp. 507-523 ◽  
Author(s):  
M. Jaberipour ◽  
E. Khorram
2020 ◽  
Vol 10 (6) ◽  
pp. 1910 ◽  
Author(s):  
Hui Li ◽  
Po-Chou Shih ◽  
Xizhao Zhou ◽  
Chunming Ye ◽  
Li Huang

The novel global harmony search (NGHS) algorithm is proposed in 2010, and it is an improved harmony search (HS) algorithm which combines the particle swarm optimization (PSO) and the genetic algorithm (GA). One of the main differences between the HS and NGHS algorithms is that of using different mechanisms to renew the harmony memory (HM). In the HS algorithm, in each iteration, the new harmony is accepted and replaced the worst harmony in the HM while the fitness of the new harmony is better than the worst harmony in the HM. Conversely, in the NGHS algorithm, the new harmony replaces the worst harmony in the HM without any precondition. However, in addition to these two mechanisms, there is one old mechanism, the selective acceptance mechanism, which is used in the simulated annealing (SA) algorithm. Therefore, in this paper, we proposed the selective acceptance novel global harmony search (SANGHS) algorithm which combines the NGHS algorithm with a selective acceptance mechanism. The advantage of the SANGHS algorithm is that it balances the global exploration and local exploitation ability. Moreover, to verify the search ability of the SANGHS algorithm, we used the SANGHS algorithm in ten well-known benchmark continuous optimization problems and two engineering problems and compared the experimental results with other metaheuristic algorithms. The experimental results show that the SANGHS algorithm has better search ability than the other four harmony search algorithms in ten continuous optimization problems. In addition, in two engineering problems, the SANGHS algorithm also provided a competition solution compared with other state-of-the-art metaheuristic algorithms.


2013 ◽  
Vol 464 ◽  
pp. 352-357
Author(s):  
Pasura Aungkulanon

The engineering optimization problems are large and complex. Effective methods for solving these problems using a finite sequence of instructions can be categorized into optimization and meta-heuristics algorithms. Meta-heuristics techniques have been proved to solve various real world problems. In this study, a comparison of two meta-heuristic techniques, namely, Global-Best Harmony Search algorithm (GHSA) and Bat algorithm (BATA), for solving constrained optimization problems was carried out. GHSA and BATA are optimization algorithms inspired by the structure of harmony improvisation search process and social behavior of bat echolocation for decision direction. These algorithms were implemented under different natures of three optimization, which are single-peak, multi-peak and curved-ridge response surfaces. Moreover, both algorithms were also applied to constrained engineering problems. The results from non-linear continuous unconstrained functions in the context of response surface methodology and constrained problems can be shown that Bat algorithm seems to be better in terms of the sample mean and variance of design points yields and computation time.


Sign in / Sign up

Export Citation Format

Share Document