Linear preservers of DSS-weak majorization on discrete Lebesgue space , when I is an infinite set

Author(s):  
Martin Z. Ljubenović ◽  
Dragan S. Rakić ◽  
Dragan S. Djordjević
2016 ◽  
Vol 497 ◽  
pp. 181-198 ◽  
Author(s):  
Martin Ljubenović ◽  
Dragan S. Djordjević

2018 ◽  
Vol 34 ◽  
pp. 407-427 ◽  
Author(s):  
Martin Ljubenović ◽  
Dragan Djordjevic

Linear preservers of weak supermajorization which is defined on positive functions contained in the discrete Lebesgue space $\ell^1(I)$ are characterized. Two different classes of operators that preserve the weak supermajorization are formed. It is shown that every linear preserver may be decomposed as sum of two operators from the above classes, and conversely, the sum of two operators which satisfy an additional condition is a linear preserver. Necessary and sufficient conditions under which a bounded linear operator is a linear preserver of the weak supermajorization are given. It is concluded that positive linear preservers of the weak supermajorization coincide with preservers of weak majorization and standard majorization on $\ell^1(I)$.


2017 ◽  
Vol 66 (10) ◽  
pp. 2076-2088 ◽  
Author(s):  
A. Bayati Eshkaftaki ◽  
M. Heydari Berenjegani ◽  
F. Bahrami

Author(s):  
Bin Liu ◽  
Jouni Rättyä ◽  
Fanglei Wu

AbstractBounded and compact differences of two composition operators acting from the weighted Bergman space $$A^p_\omega $$ A ω p to the Lebesgue space $$L^q_\nu $$ L ν q , where $$0<q<p<\infty $$ 0 < q < p < ∞ and $$\omega $$ ω belongs to the class "Equation missing" of radial weights satisfying two-sided doubling conditions, are characterized. On the way to the proofs a new description of q-Carleson measures for $$A^p_\omega $$ A ω p , with $$p>q$$ p > q and "Equation missing", involving pseudohyperbolic discs is established. This last-mentioned result generalizes the well-known characterization of q-Carleson measures for the classical weighted Bergman space $$A^p_\alpha $$ A α p with $$-1<\alpha <\infty $$ - 1 < α < ∞ to the setting of doubling weights. The case "Equation missing" is also briefly discussed and an open problem concerning this case is posed.


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 735
Author(s):  
Tomasz Dzido ◽  
Renata Zakrzewska

We consider the important generalisation of Ramsey numbers, namely on-line Ramsey numbers. It is easiest to understand them by considering a game between two players, a Builder and Painter, on an infinite set of vertices. In each round, the Builder joins two non-adjacent vertices with an edge, and the Painter colors the edge red or blue. An on-line Ramsey number r˜(G,H) is the minimum number of rounds it takes the Builder to force the Painter to create a red copy of graph G or a blue copy of graph H, assuming that both the Builder and Painter play perfectly. The Painter’s goal is to resist to do so for as long as possible. In this paper, we consider the case where G is a path P4 and H is a path P10 or P11.


2021 ◽  
Vol 71 (3) ◽  
pp. 595-614
Author(s):  
Ram Krishna Pandey ◽  
Neha Rai

Abstract For a given set M of positive integers, a well-known problem of Motzkin asks to determine the maximal asymptotic density of M-sets, denoted by μ(M), where an M-set is a set of non-negative integers in which no two elements differ by an element in M. In 1973, Cantor and Gordon find μ(M) for |M| ≤ 2. Partial results are known in the case |M| ≥ 3 including some results in the case when M is an infinite set. Motivated by some 3 and 4-element families already discussed by Liu and Zhu in 2004, we study μ(M) for two families namely, M = {a, b,a + b, n(a + b)} and M = {a, b, b − a, n(b − a)}. For both of these families, we find some exact values and some bounds on μ(M). This number theory problem is also related to various types of coloring problems of the distance graphs generated by M. So, as an application, we also study these coloring parameters associated with these families.


1997 ◽  
Vol 104 (2) ◽  
pp. 107-115 ◽  
Author(s):  
Ralph H. Buchholz ◽  
Randall L. Rathbun
Keyword(s):  

Philosophies ◽  
2018 ◽  
Vol 3 (4) ◽  
pp. 30 ◽  
Author(s):  
Abir Igamberdiev

Relational ideas for our description of the natural world can be traced to the concept of Anaxagoras on the multiplicity of basic particles, later called “homoiomeroi” by Aristotle, that constitute the Universe and have the same nature as the whole world. Leibniz viewed the Universe as an infinite set of embodied logical essences called monads, which possess inner view, compute their own programs and perform mathematical transformations of their qualities, independently of all other monads. In this paradigm, space appears as a relational order of co-existences and time as a relational order of sequences. The relational paradigm was recognized in physics as a dependence of the spatiotemporal structure and its actualization on the observer. In the foundations of mathematics, the basic logical principles are united with the basic geometrical principles that are generic to the unfolding of internal logic. These principles appear as universal topological structures (“geometric atoms”) shaping the world. The decision-making system performs internal quantum reduction which is described by external observers via the probability function. In biology, individual systems operate as separate relational domains. The wave function superposition is restricted within a single domain and does not expand outside it, which corresponds to the statement of Leibniz that “monads have no windows”.


Sign in / Sign up

Export Citation Format

Share Document