Calibration estimator of population mean under stratified ranked set sampling design

2017 ◽  
Vol 47 (23) ◽  
pp. 5845-5853 ◽  
Author(s):  
Nursel Koyuncu
Author(s):  
Chunxian Long ◽  
Wangxue Chen ◽  
Rui Yang ◽  
Dongsen Yao

Cost-effective sampling design is a problem of major concern in some experiments especially when the measurement of the characteristic of interest is costly or painful or time-consuming. In this article, we investigate ratio-type estimators of the population mean of the study variable, involving either the first or the third quartile of the auxiliary variable, using ranked set sampling (RSS) and extreme ranked set sampling (ERSS) schemes. The properties of the estimators are obtained. The estimators in RSS and ERSS are compared to their counterparts in simple random sampling (SRS) for normal data. The numerical results show that the estimators in RSS and ERSS are significantly more efficient than their counterparts in SRS.


2022 ◽  
pp. 141-170
Author(s):  
Carmen Elena Viada- Gonzalez ◽  
Sira María Allende-Alonso

In this chapter, the authors develop stratified ranked set sampling (RSS) under missing observations. Imputation based of ratio rules is used for completing the information for estimating the mean. They introduce the needed elements on imputation and on the sample selection procedures. They extend RSS models to imputation in stratified populations. A theory on ratio-based imputation rules for estimating the mean is presented. Some numerical studies, based on real-world problems, are developed for illustrating the behaviour of the accuracy of the estimators due to their proposals.


2021 ◽  
Vol 8 (1) ◽  
pp. 1948184
Author(s):  
Asad Ali ◽  
Muhammad Moeen Butt ◽  
Kanwal Iqbal ◽  
Muhammad Hanif ◽  
Muhammad Zubair

2003 ◽  
Vol 54 (1-2) ◽  
pp. 105-114
Author(s):  
Sukuman Sarikavanij ◽  
Montip Tiensuw

In this paper we discuss two case studies which clearly indicate the advantages of using a ranked set sample (RSS) over those of a simple random sample (SRS). The applications of RSS considered here cover single family homes sales data, and tree data. It is demonstrated that in each case RSS is much more efficient than SRS for estimation of population mean.


Sign in / Sign up

Export Citation Format

Share Document