Optimal reinsurance–investment policies for insurers with mispricing under mean-variance criterion

Author(s):  
Yijun Wang ◽  
Yingchun Deng ◽  
Ya Huang ◽  
Jieming Zhou ◽  
Xuyan Xiang
2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Peng Yang

Based on the mean-variance criterion, this paper investigates the continuous-time reinsurance and investment problem. The insurer’s surplus process is assumed to follow Cramér–Lundberg model. The insurer is allowed to purchase reinsurance for reducing claim risk. The reinsurance pattern that the insurer adopts is combining proportional and excess of loss reinsurance. In addition, the insurer can invest in financial market to increase his wealth. The financial market consists of one risk-free asset and n correlated risky assets. The objective is to minimize the variance of the terminal wealth under the given expected value of the terminal wealth. By applying the principle of dynamic programming, we establish a Hamilton–Jacobi–Bellman (HJB) equation. Furthermore, we derive the explicit solutions for the optimal reinsurance-investment strategy and the corresponding efficient frontier by solving the HJB equation. Finally, numerical examples are provided to illustrate how the optimal reinsurance-investment strategy changes with model parameters.


2016 ◽  
Vol 4 (5) ◽  
pp. 408-418 ◽  
Author(s):  
Deli Zhao ◽  
Baofeng Zhang ◽  
Zongshui Wang

AbstractThis paper proposes a financing system consisting of a bank under Mean-Variance criterion and a capital-constrained retailer, where the bank offers an unlimited credit to the retailer. The demand is assumed to be stochastic. The newsvendor is allowed to make an emergency order with a minimum reorder quantity threshold (RQT). It shows that under RQT, the newsvendor has different reorder strategies. The optimal primary order quantity and interest rate are derived, sequentially. Extension under perfectly competitive capital market is given. The mathematic model reveals that RQT and reorder price have significant effect on the optimal strategies.


Mathematics ◽  
2020 ◽  
Vol 8 (11) ◽  
pp. 1915
Author(s):  
William Lefebvre ◽  
Grégoire Loeper ◽  
Huyên Pham

This paper studies a variation of the continuous-time mean-variance portfolio selection where a tracking-error penalization is added to the mean-variance criterion. The tracking error term penalizes the distance between the allocation controls and a reference portfolio with same wealth and fixed weights. Such consideration is motivated as follows: (i) On the one hand, it is a way to robustify the mean-variance allocation in the case of misspecified parameters, by “fitting" it to a reference portfolio that can be agnostic to market parameters; (ii) On the other hand, it is a procedure to track a benchmark and improve the Sharpe ratio of the resulting portfolio by considering a mean-variance criterion in the objective function. This problem is formulated as a McKean–Vlasov control problem. We provide explicit solutions for the optimal portfolio strategy and asymptotic expansions of the portfolio strategy and efficient frontier for small values of the tracking error parameter. Finally, we compare the Sharpe ratios obtained by the standard mean-variance allocation and the penalized one for four different reference portfolios: equal-weights, minimum-variance, equal risk contributions and shrinking portfolio. This comparison is done on a simulated misspecified model, and on a backtest performed with historical data. Our results show that in most cases, the penalized portfolio outperforms in terms of Sharpe ratio both the standard mean-variance and the reference portfolio.


2006 ◽  
Vol 2006 ◽  
pp. 1-10 ◽  
Author(s):  
Wing-Keung Wong

Meyer (1987) extended the theory of mean-variance criterion to include the comparison among distributions that differ only by location and scale parameters and to include general utility functions with only convexity or concavity restrictions. In this paper, we make some comments on Meyer's paper and extend the results from Tobin (1958) that the indifference curve is convex upwards for risk averters, concave downwards for risk lovers, and horizontal for risk neutral investors to include the general conditions stated by Meyer (1987). We also provide an alternative proof for the theorem. Levy (1989) extended Meyer's results by introducing some inequality relationships between the stochastic-dominance and the mean-variance efficient sets. In this paper, we comment on Levy's findings and show that these relationships do not hold in certain situations. We further develop some properties among the first- and second-degree stochastic dominance efficient sets and the mean-variance efficient set.


Sign in / Sign up

Export Citation Format

Share Document