Supplementary notes on the minimax and orthogonal least squares line fitting procedures

Author(s):  
Richard William Farebrother
Author(s):  
Jinming Wen ◽  
Jie Li ◽  
Huanmin Ge ◽  
Zhengchun Zhou ◽  
Weiqi Luo

Author(s):  
OLFA JEMAI ◽  
MOURAD ZAIED ◽  
CHOKRI BEN AMAR ◽  
MOHAMED ADEL ALIMI

Taking advantage of both the scaling property of wavelets and the high learning ability of neural networks, wavelet networks have recently emerged as a powerful tool in many applications in the field of signal processing such as data compression, function approximation as well as image recognition and classification. A novel wavelet network-based method for image classification is presented in this paper. The method combines the Orthogonal Least Squares algorithm (OLS) with the Pyramidal Beta Wavelet Network architecture (PBWN). First, the structure of the Pyramidal Beta Wavelet Network is proposed and the OLS method is used to design it by presetting the widths of the hidden units in PBWN. Then, to enhance the performance of the obtained PBWN, a novel learning algorithm based on orthogonal least squares and frames theory is proposed, in which we use OLS to select the hidden nodes. In the simulation part, the proposed method is employed to classify colour images. Comparisons with some typical wavelet networks are presented and discussed. Simulations also show that the PBWN-orthogonal least squares (PBWN-OLS) algorithm, which combines PBWN with the OLS algorithm, results in better performance for colour image classification.


Author(s):  
Kenneth Kar ◽  
Akshya K. Swain ◽  
Robert Raine

The present study addresses the problem of estimating time-varying time constants associated with thermocouple sensors by a set of basis functions. By expanding each time-varying time constant onto a finite set of basis sequences, the time-varying identification problem reduces to a parameter estimation problem of a time-invariant system. The proposed algorithm, to be called as orthogonal least-squares with basis function expansion algorithm, combines the orthogonal least-squares algorithm with an error reduction ratio test to include significant basis functions into the model, which results in a parsimonious model structure. The performance of the method was compared with a linear Kalman filter. Simulations on engine data have demonstrated that the proposed method performs satisfactorily and is better than the Kalman filter. The new technique has been applied in a Stirling cycle compressor. The sinusoidal variations in time constant are tracked properly using the new technique, but the linear Kalman filter fails to do so. Both model validation and thermodynamic laws confirm that the new technique gives unbiased estimates and that the assumed thermocouple model is adequate.


Sign in / Sign up

Export Citation Format

Share Document