Structural Measures for Linear Feature Pattern Recognition from Satellite Imagery

1991 ◽  
Vol 17 (4) ◽  
pp. 294-303 ◽  
Author(s):  
Jinfei Wang ◽  
Philip J. Howarth
2020 ◽  
Vol 12 (3) ◽  
pp. 500 ◽  
Author(s):  
Mehrnoush Soroush ◽  
Alireza Mehrtash ◽  
Emad Khazraee ◽  
Jason A. Ur

In this paper, we report the results of our work on automated detection of qanat shafts on the Cold War-era CORONA Satellite Imagery. The increasing quantity of air and space-borne imagery available to archaeologists and the advances in computational science have created an emerging interest in automated archaeological detection. Traditional pattern recognition methods proved to have limited applicability for archaeological prospection, for a variety of reasons, including a high rate of false positives. Since 2012, however, a breakthrough has been made in the field of image recognition through deep learning. We have tested the application of deep convolutional neural networks (CNNs) for automated remote sensing detection of archaeological features. Our case study is the qanat systems of the Erbil Plain in the Kurdistan Region of Iraq. The signature of the underground qanat systems on the remote sensing data are the semi-circular openings of their vertical shafts. We choose to focus on qanat shafts because they are promising targets for pattern recognition and because the richness and the extent of the qanat landscapes cannot be properly captured across vast territories without automated techniques. Our project is the first effort to use automated techniques on historic satellite imagery that takes advantage of neither the spectral imagery resolution nor very high (sub-meter) spatial resolution.


Author(s):  
G.Y. Fan ◽  
J.M. Cowley

In recent developments, the ASU HB5 has been modified so that the timing, positioning, and scanning of the finely focused electron probe can be entirely controlled by a host computer. This made the asynchronized handshake possible between the HB5 STEM and the image processing system which consists of host computer (PDP 11/34), DeAnza image processor (IP 5000) which is interfaced with a low-light level TV camera, array processor (AP 400) and various peripheral devices. This greatly facilitates the pattern recognition technique initiated by Monosmith and Cowley. Software called NANHB5 is under development which, instead of employing a set of photo-diodes to detect strong spots on a TV screen, uses various software techniques including on-line fast Fourier transform (FFT) to recognize patterns of greater complexity, taking advantage of the sophistication of our image processing system and the flexibility of computer software.


Sign in / Sign up

Export Citation Format

Share Document