SINGLE MACHINE INFINITE BUS POWER SYSTEM TRANSIENT STABILITY: SOFTWARE IMPLEMENTATION

1998 ◽  
Vol 26 (7) ◽  
pp. 699-707 ◽  
Author(s):  
ATIF ZAMAN KHAN
2012 ◽  
Vol 263-266 ◽  
pp. 781-785 ◽  
Author(s):  
Liang Pi ◽  
Chen Wang ◽  
Wei Zheng

Single-machine infinite-bus system and two-machine system simulation models were built to study the power system transient stability. Based on time domain simulation, the effect of generator inertia time constant (τg), and excitation system ceiling voltage (Ke) on transient stability were analyzed by single-machine infinite-bus system. The changes of transient stability of two-machine system were also compared by means of power system stabilizers (PSS) and static VAR compensator (SVC). In particular, the system transient stability varied greatly in different locations of SVC. Finally, some suggestions concerning the improvement of power system transient stability were put forward.


1979 ◽  
Vol 16 (4) ◽  
pp. 355-362
Author(s):  
A.H.M.A. Rahim ◽  
M. M. Rahman

The transient stability of a single machine infinite bus power system problem was examined through the direct method of Liapunov. It was observed, through the direct method, that the system can be operated at a larger exciter gain if an additional feedback signal proportional to shaft speed deviation is used.


2014 ◽  
Vol 986-987 ◽  
pp. 1286-1290
Author(s):  
Jin Li ◽  
Ya Min Pi ◽  
Hui Yuan Yang

In this paper, the series converters of Distributed Power Flow Controller are the main object of study. Its mechanism of suppressing power system oscillations is studied by theoretical analysis and formula derivation, which relies on a single-machine infinite-bus power system, installed the series converters. Then based on the mechanism, adopting the classic PI control and the damping controller, designed the transient stability control loop for the series converters. Finally, simulations performed by PSCAD/EMTDC, the results show that DPFC device can effectively suppress oscillation and improve system stability.


Author(s):  
Bidyadhar Rout ◽  
B.B. Pati ◽  
S. Panda

This paper studies the improvement of transient stability of a single-Machine Infinite-Bus (SMIB) power system using Proportional Derivative (PD) type Static Synchronous Series Compensator (SSSC) and damping controllers. The design problem has been considered as optimisation problem and a modified version of recently proposed Sine Cosine Algorithm (SCA) has been employed for determining the optimal controller parameters. Proposed modified SCA (mSCA) algorithm is first tested using bench mark test functions and compared with SCA, and other heuristic evolutionary optimization algorithms like Grey Wolf optimization (GWO), Particle Swarm optimization (PSO), Gravitational Search algorithm (GSA) and Differential Evolution algorithm to show its superiority. The proposed mSCA algorithm is then applied to optimize simultaneously the PD type lead lag controller parameters pertaining to SSSC and power system stabilizer(PSS). The proposed controller provides sufficient damping for power system oscillation in different operating conditions and disturbances. Results analysis reveal that proposed mSCA technique provides higher effectiveness and robustness in damping oscillations of the power system and increases the dynamic stability more.


Sign in / Sign up

Export Citation Format

Share Document