Dynamical behavior of stochastic predator-prey models with distributed delay and general functional response

2019 ◽  
Vol 38 (3) ◽  
pp. 403-426 ◽  
Author(s):  
Qun Liu ◽  
Daqing Jiang ◽  
Tasawar Hayat ◽  
Ahmed Alsaedi
Parasitology ◽  
2010 ◽  
Vol 137 (6) ◽  
pp. 1027-1038 ◽  
Author(s):  
ANDY FENTON ◽  
SARAH E. PERKINS

SUMMARYPredator-prey models are often applied to the interactions between host immunity and parasite growth. A key component of these models is the immune system's functional response, the relationship between immune activity and parasite load. Typically, models assume a simple, linear functional response. However, based on the mechanistic interactions between parasites and immunity we argue that alternative forms are more likely, resulting in very different predictions, ranging from parasite exclusion to chronic infection. By extending this framework to consider multiple infections we show that combinations of parasites eliciting different functional responses greatly affect community stability. Indeed, some parasites may stabilize other species that would be unstable if infecting alone. Therefore hosts' immune systems may have adapted to tolerate certain parasites, rather than clear them and risk erratic parasite dynamics. We urge for more detailed empirical information relating immune activity to parasite load to enable better predictions of the dynamic consequences of immune-mediated interspecific interactions within parasite communities.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Xinhong Zhang ◽  
Qing Yang

<p style='text-indent:20px;'>In this paper, we consider a stochastic predator-prey model with general functional response, which is perturbed by nonlinear Lévy jumps. Firstly, We show that this model has a unique global positive solution with uniform boundedness of <inline-formula><tex-math id="M1">\begin{document}$ \theta\in(0,1] $\end{document}</tex-math></inline-formula>-th moment. Secondly, we obtain the threshold for extinction and exponential ergodicity of the one-dimensional Logistic system with nonlinear perturbations. Then based on the results of Logistic system, we introduce a new technique to study the ergodic stationary distribution for the stochastic predator-prey model with general functional response and nonlinear jump-diffusion, and derive the sufficient and almost necessary condition for extinction and ergodicity.</p>


2010 ◽  
Vol 2010 ◽  
pp. 1-24 ◽  
Author(s):  
Wahiba Khellaf ◽  
Nasreddine Hamri

We study the qualitative behavior of a class of predator-prey models with Beddington-DeAngelis-type functional response, primarily from the viewpoint of permanence (uniform persistence). The Beddington-DeAngelis functional response is similar to the Holling type-II functional response but contains a term describing mutual interference by predators. We establish criteria under which we have boundedness of solutions, existence of an attracting set, and global stability of the coexisting interior equilibrium via Lyapunov function.


Sign in / Sign up

Export Citation Format

Share Document