scholarly journals Boundedness and Global Stability for a Predator-Prey System with the Beddington-DeAngelis Functional Response

2010 ◽  
Vol 2010 ◽  
pp. 1-24 ◽  
Author(s):  
Wahiba Khellaf ◽  
Nasreddine Hamri

We study the qualitative behavior of a class of predator-prey models with Beddington-DeAngelis-type functional response, primarily from the viewpoint of permanence (uniform persistence). The Beddington-DeAngelis functional response is similar to the Holling type-II functional response but contains a term describing mutual interference by predators. We establish criteria under which we have boundedness of solutions, existence of an attracting set, and global stability of the coexisting interior equilibrium via Lyapunov function.

2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Yumin Wu ◽  
Fengde Chen ◽  
Wanlin Chen ◽  
Yuhua Lin

A nonautonomous discrete predator-prey system incorporating a prey refuge and Holling type II functional response is studied in this paper. A set of sufficient conditions which guarantee the persistence and global stability of the system are obtained, respectively. Our results show that if refuge is large enough then predator species will be driven to extinction due to the lack of enough food. Two examples together with their numerical simulations show the feasibility of the main results.


2009 ◽  
Vol 02 (02) ◽  
pp. 229-242 ◽  
Author(s):  
JIANWEN JIA ◽  
HUI CAO

In this paper, we introduce and study Holling type II functional response predator–prey system with digest delay and impulsive harvesting on the prey, which contains with periodically pulsed on the prey and time delay on the predator. We investigate the existence and global attractivity of the predator-extinction periodic solutions of the system. By using the theory on delay functional and impulsive differential equation, we obtain the sufficient condition with time delay and impulsive perturbations for the permanence of the system.


2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
Yong-Hong Fan ◽  
Lin-Lin Wang

Average conditions are obtained for the permanence of a discrete bounded system with Holling type II functional responseu(n+1)=u(n)exp{a(n)-b(n)u(n)-c(n)v(n)/(u(n)+m(n)v(n))},v(n+1)=v(n)exp{-d(n)+e(n)u(n)/(u(n)+m(n)v(n))}.The method involves the application of estimates of uniform upper and lower bounds of solutions. When these results are applied to some special delay population models with multiple delays, some new results are obtained and some known results are generalized.


2014 ◽  
Vol 595 ◽  
pp. 283-288 ◽  
Author(s):  
Yuan Tian ◽  
Hai Ting Sun ◽  
Yu Xia He

This paper analyses the dynamics of a non-smooth predator-prey model with refuge effect, where the functional response is taken as Holling I type. To begin with, some preliminaries and the existence of regular, virtual, pseudo-equilibrium and tangent point are established. Then, the stability of trivial equilibrium and predator free equilibrium is discussed. Furthermore, it is shown that the regular equilibrium and the pseudo-equilibrium cannot coexist. Finally, the conclusion is given.


Sign in / Sign up

Export Citation Format

Share Document