Rheumatoid arthritis and the complement system

2007 ◽  
Vol 39 (7) ◽  
pp. 517-530 ◽  
Author(s):  
Marcin Okroj ◽  
Dick Heinegård ◽  
Rikard Holmdahl ◽  
Anna M. Blom
1976 ◽  
Vol 19 (2) ◽  
pp. 161-168 ◽  
Author(s):  
Richard I. Rynes ◽  
Shaun Ruddy ◽  
Jocelyn Spragg ◽  
J. Sydney Stillman ◽  
K. Frank Austen

2011 ◽  
Vol 10 (10) ◽  
pp. 617-623 ◽  
Author(s):  
Eleonora Ballanti ◽  
Carlo Perricone ◽  
Gioia di Muzio ◽  
Barbara Kroegler ◽  
Maria Sole Chimenti ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-22 ◽  
Author(s):  
Adriana Balbina Paoliello-Paschoalato ◽  
Larissa Fávaro Marchi ◽  
Micássio Fernandes de Andrade ◽  
Luciana Mariko Kabeya ◽  
Eduardo Antônio Donadi ◽  
...  

Rheumatoid arthritis (RA) is a highly disabling disease that affects all structures of the joint and significantly impacts on morbidity and mortality in RA patients. RA is characterized by persistent inflammation of the synovial membrane lining the joint associated with infiltration of immune cells. Eighty to 90% of the leukocytes infiltrating the synovia are neutrophils. The specific role that neutrophils play in the onset of RA is not clear, but recent studies have evidenced that they have an important participation in joint damage and disease progression through the release of proteolytic enzymes, reactive oxygen species (ROS), cytokines, and neutrophil extracellular traps, in particular during frustrated phagocytosis of immune complexes (ICs). In addition, the local and systemic activation of the complement system contributes to the pathogenesis of RA and other IC-mediated diseases. This review discusses (i) the participation of Fcγand complement receptors in mediating the effector functions of neutrophils in RA; (ii) the contribution of the complement system and ROS-dependent and ROS-independent mechanisms to joint damage in RA; and (iii) the use of plant extracts, dietary compounds, and isolated natural compounds in the treatment of RA, focusing on modulation of the effector functions of neutrophils and the complement system activity and/or activation.


2018 ◽  
Vol 38 (6) ◽  
pp. 1043-1052 ◽  
Author(s):  
Larissa F. Marchi ◽  
Adriana B. Paoliello-Paschoalato ◽  
Renê D. R. Oliveira ◽  
Ana Elisa C. S. Azzolini ◽  
Luciana M. Kabeya ◽  
...  

2013 ◽  
Vol 71 (Suppl 3) ◽  
pp. 131.1-131 ◽  
Author(s):  
C.G. Ammitzbøll ◽  
J.C. Jensenius ◽  
T. Ellingsen ◽  
S. Thiel ◽  
K. Hørslev-Petersen ◽  
...  

1991 ◽  
Vol 66 (01) ◽  
pp. 049-061 ◽  
Author(s):  
Björn Dahlbäck

SummaryThe protein C anticoagulant system provides important control of the blood coagulation cascade. The key protein is protein C, a vitamin K-dependent zymogen which is activated to a serine protease by the thrombin-thrombomodulin complex on endothelial cells. Activated protein C functions by degrading the phospholipid-bound coagulation factors Va and VIIIa. Protein S is a cofactor in these reactions. It is a vitamin K-dependent protein with multiple domains. From the N-terminal it contains a vitamin K-dependent domain, a thrombin-sensitive region, four EGF)epidermal growth factor (EGF)-like domains and a C-terminal region homologous to the androgen binding proteins. Three different types of post-translationally modified amino acid residues are found in protein S, 11 γ-carboxy glutamic acid residues in the vitamin K-dependent domain, a β-hydroxylated aspartic acid in the first EGF-like domain and a β-hydroxylated asparagine in each of the other three EGF-like domains. The EGF-like domains contain very high affinity calcium binding sites, and calcium plays a structural and stabilising role. The importance of the anticoagulant properties of protein S is illustrated by the high incidence of thrombo-embolic events in individuals with heterozygous deficiency. Anticoagulation may not be the sole function of protein S, since both in vivo and in vitro, it forms a high affinity non-covalent complex with one of the regulatory proteins in the complement system, the C4b-binding protein (C4BP). The complexed form of protein S has no APC cofactor function. C4BP is a high molecular weight multimeric protein with a unique octopus-like structure. It is composed of seven identical α-chains and one β-chain. The α-and β-chains are linked by disulphide bridges. The cDNA cloning of the β-chain showed the α- and β-chains to be homologous and of common evolutionary origin. Both subunits are composed of multiple 60 amino acid long repeats (short complement or consensus repeats, SCR) and their genes are located in close proximity on chromosome 1, band 1q32. Available experimental data suggest the β-chain to contain the single protein S binding site on C4BP, whereas each of the α-chains contains a binding site for the complement protein, C4b. As C4BP lacking the β-chain is unable to bind protein S, the β-chain is required for protein S binding, but not for the assembly of the α-chains during biosynthesis. Protein S has a high affinity for negatively charged phospholipid membranes, and is instrumental in binding C4BP to negatively charged phospholipid. This constitutes a novel mechanism for control of the complement system on phospholipid surfaces. Recent findings have shown circulating C4BP to be involved in yet another calcium-dependent protein-protein interaction with a protein known as the serum amyloid P-component (SAP). The binding sites on C4BP for protein S and SAP are independent. SAP, which is a normal constituent in plasma and in tissue, is a so-called pentraxin being composed of 5 non-covalently bound 25 kDa subunits. It is homologous to C reactive protein (CRP) but its function is not yet known. The specific high affinity interactions between protein S, C4BP and SAP suggest the regulation of blood coagulation and that of the complement system to be closely linked.


Sign in / Sign up

Export Citation Format

Share Document