synovial fluid
Recently Published Documents





2022 ◽  
Vol 12 (3) ◽  
pp. 625-629
Chunpei Ou ◽  
Pengfei Chen ◽  
Jinqi Song ◽  
Xuefeng Deng ◽  
Feiqiang Chen ◽  

Osteoarthritis (OA) is a degenerative disease of joints commonly occurring in the elderly and middleaged people. This study aimed to investigate the effect of recombinant human endostatin (rhEndo) on OA and the levels of MMP-13, IL-1 and IL-6 in the synovial fluid in osteoarthritis rats. OA models were made by injecting 4% papain into the knee joint cavity of rats once every three days for three times. The models were then injected subcutaneously with rhEndo and examined six weeks later for the Mankin scores and levels of MMP-13, IL-1 and IL-6 using ELISA. Compared with control, the Mankin score as well as the levels of IL-1, IL-6 and MMP-13 were significantly increased in the models (0.30 vs. 5.80, 1.12 vs. 12.84 pg/ mL, 12.22 vs. 43.82 pg/ mL and 0.23 vs. 26.31 ng/ mL). Following treatment with 4 mg/kg rhEndo, the Mankin score in model decreased to 0.90, meanwhile, the levels of IL-1, IL-6 and MMP-13 decreased significantly to 0.79 pg/ mL, 2.89 pg/mL and 1.17 ng/mL, respectively, in a dose dependent manner. Therefore, rhEndo can alleviate osteoarthritis by reducing MMP-13, IL-1 and IL-6 expression in rats.

2022 ◽  
Vol 12 ◽  
Sabine Arve-Butler ◽  
Anki Mossberg ◽  
Tobias Schmidt ◽  
Charlotte Welinder ◽  
Hong Yan ◽  

Neutrophils are highly abundant in synovial fluid of rheumatic inflamed joints. In oligoarticular juvenile idiopathic arthritis (JIA), synovial fluid neutrophils have impaired effector functions and altered phenotype. We hypothesized that these alterations might impact the immunoregulatory interplay between neutrophils and T cells. In this study we analyzed the suppressive effect of neutrophils, isolated from blood and synovial fluid of oligoarticular JIA patients, on CD4+ T cells activated by CD3/CD28 stimulation. JIA blood neutrophils suppressed T cell proliferation but synovial fluid neutrophils from several patients did not. The loss of T cell suppression was replicated in an in vitro transmigration assay, where healthy control neutrophils migrated into synovial fluid through transwell inserts with endothelial cells and synoviocytes. Non-migrated neutrophils suppressed proliferation of activated CD4+ T cells, but migrated neutrophils had no suppressive effect. Neutrophil suppression of T cells was partly dependent on reactive oxygen species (ROS), demonstrated by impaired suppression in presence of catalase. Migrated neutrophils had reduced ROS production compared to non-migrated neutrophils. A proteomic analysis of transwell-migrated neutrophils identified alterations in proteins related to neutrophil ROS production and degranulation, and biological processes involving protein transport, cell-cell contact and inflammation. In conclusion, neutrophils in synovial fluid of children with JIA have impaired capacity to suppress activated T cells, which may be due to reduced oxidative burst and alterations in proteins related to cell-cell contact and inflammation. The lack of T cell suppression by neutrophils in synovial fluid may contribute to local inflammation and autoimmune reactions in the JIA joint.

2022 ◽  
Vol 12 ◽  
Eldiza Puji Rahmi ◽  
Endang Kumolosasi ◽  
Juriyati Jalil ◽  
Fhataheya Buang ◽  
Jamia Azdina Jamal

Andrographis paniculata (Burm.f.) Nees has been found to have anti-inflammatory and immunostimulatory effects. This study was to investigate antihyperuricemic and anti-inflammatory effects of A. paniculata leaf extracts. Andrographolide, 14-deoxy-11,12-didehydroandrographolide, and neoandrographolide were quantified in 80% ethanol (EtOH80) and water extracts using High Performance Liquid Chromatography (HPLC) analysis. Antihyperuricemic activity was evaluated using a spectrophotometric in vitro inhibitory xanthine oxidase (XO) assay. The most active extract and andrographolide were further investigated in a hyperuricemic rat model induced by potassium oxonate to determine serum uric acid levels, liver XO activity, followed by Western blot analysis for renal urate transporter URAT1, GLUT9, and OAT1 to investigate the excretion of uric acid via kidney. Anti-inflammatory activity was assessed by in vitro interleukin assay for interleukin (IL-1α, IL-1β, IL-6, IL-8), and tumor necrosis factor (TNF-α) in monosodium urate (MSU) crystal-induced human fibroblast-like synoviocyte (HFLS) cells using ELISA-kits, followed by Western blot analysis for the expression of MyD88, NLRP3, NF-κB p65, and caspase-1 proteins to investigate the inflammation pathway. In vivo assay of the most active extract and andrographolide were performed based on the swelling rate and inhibition of pro-inflammatory mediator release from synovial fluid of a rat knee joint induced by MSU crystals. The results showed that the EtOH80 extract had a greater amount of andrographolide (11.34% w/w) than the water extract (1.38% w/w). In the XO inhibitory activity, none of the samples exhibited greater than 50% inhibition. However, in a rat model, EtOH80 extract (200 mg/kg/day) and andrographolide (30 mg/kg/day) decreased serum uric acid levels and reduced liver XO activity, reduced the protein expression levels of URAT1 and GLUT9, and restored the decrease in OAT1 levels. In the in vitro anti-inflammatory study, EtOH80 extract and andrographolide significantly decreased production of IL-1α, IL-1β, IL-6, and TNF-α, as well as inhibited the synthesis of MyD88, NLRP3, NF-κB p65, and caspase-1 in a concentration-dependent manner, almost comparable to dexamethasone. The EtOH80 extract (200 mg/kg/day) and andrographolide (30 mg/kg) significantly decreased swelling rate and IL-1α, IL-1β, IL-6, and TNF-α in the synovial fluid of rat models in a time-dependent manner, comparable to indomethacin (3 mg/kg/day). In conclusion, the findings show that EtOH80 extract has a substantial anti-gout effect by lowering uric acid levels and suppressing pro-inflammatory mediator production due to the andrographolide content, that might be beneficial in the treatment of gouty-inflammation.

2022 ◽  
Vol 24 (1) ◽  
Hilde Brouwers ◽  
Johannes Hendrick von Hegedus ◽  
Enrike van der Linden ◽  
Rachid Mahdad ◽  
Margreet Kloppenburg ◽  

Abstract Background Synovial fluid (SF) is commonly used for diagnostic and research purposes, as it is believed to reflect the local inflammatory environment. Owing to its complex composition and especially the presence of hyaluronic acid, SF is usually viscous and non-homogeneous. In this study, we investigated the importance of homogenization of the total SF sample before subsequent analysis. Methods SF was obtained from the knee of 29 arthritis patients (26 rheumatoid arthritis, 2 osteoarthritis, and 1 juvenile idiopathic arthritis patient) as part of standard clinical care. Synovial fluid was either treated with hyaluronidase as a whole or after aliquoting to determine whether the concentration of soluble mediators is evenly distributed in the viscous synovial fluid. Cytokine and IgG levels were measured by ELISA or Luminex and a total of seven fatty acid and oxylipin levels were determined using LC-MS/MS in all aliquots. For cell analysis, synovial fluid was first centrifuged and the pellet was separated from the fluid. The fluid was subsequently treated with hyaluronidase and centrifuged to isolate remaining cells. Cell numbers and phenotype were determined using flow cytometry. Results In all patients, there was less variation in IgG, 17-HDHA, leukotriene B4 (LTB4), and prostaglandin E2 (PGE2) levels when homogenization was performed before aliquoting the SF sample. There was no difference in variation for cytokines, 15-HETE, and fatty acids arachidonic acid (AA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). Between 0.8 and 70% of immune cells (median 5%) remained in suspension and were missing in subsequent analyses when the cells were isolated from untreated SF. This percentage was higher for T and B cells: 7–85% (median 22%) and 7–88% (median 23 %), respectively. Conclusions Homogenization of the entire SF sample leads to less variability in IgG and oxylipin levels and prevents erroneous conclusions based on incomplete isolation of synovial fluid cells.

2022 ◽  
Vol 17 (1) ◽  
Cheng Li ◽  
Hao Li ◽  
Xue Yang ◽  
Fang-Zheng Zhu ◽  
Chi Xu ◽  

Abstract Background and objective The purpose of this study was to estimate the diagnostic performance of synovial fluid polymerase chain reaction (PCR) in periprosthetic hip and knee infection, and whether synovial fluid PCR has greater diagnostic significance than conventional methods. Methods The literature databases PubMed, Scopus, and the Web of Science were searched for English articles describing periprosthetic joint infection (PJI) diagnosis by synovial fluid PCR. Articles were limited to the period between January 1990 and December 2019. Subsequently, conventional methods that were used on at least two occasions were included for further analysis. Data analysis was performed using the Meta-DiSc and Stata software. Results Eleven studies with 1360 cases were included in the meta-analysis. The pooled sensitivity, specificity, and diagnostic odds ratio (DOR) of synovial fluid PCR were 0.70 (95% CI 0.66–0.74), 0.92 (95% CI 0.90–0.93), and 37.4 (95% CI 17.77–78.74), respectively. Conclusions Synovial fluid PCR provides an effective tool for rapid diagnosis of PJI, and also in the early stages of culture-negative bacterial infections.

2022 ◽  
Vol 23 (1) ◽  
pp. 541
Priya Kulkarni ◽  
Abhay Harsulkar ◽  
Anne-Grete Märtson ◽  
Siim Suutre ◽  
Aare Märtson ◽  

Introduction: Osteophytes are a prominent feature of osteoarthritis (OA) joints and one of the clinical hallmarks of the disease progression. Research on osteophytes is fragmentary and modes of its contribution to OA pathology are obscure. Aim: To elucidate the role of osteophytes in OA pathology from a perspective of molecular and cellular events. Methods: RNA-seq of fully grown osteophytes, collected from tibial plateau of six OA patients revealed patterns corresponding to active extracellular matrix re-modulation and prominent participation of mast cells. Presence of mast cells was further confirmed by immunohistochemistry, performed on the sections of the osteophytes using anti-tryptase alpha/beta-1 and anti-FC epsilon RI antibodies and the related key up-regulated genes were validated by qRT-PCR. To test the role of OA synovial fluid (SF) in mast cell maturation as proposed by the authors, hematopoietic stem cells (HSCs) and ThP1 cells were cultured in a media supplemented with 10% SF samples, obtained from various grades of OA patients and were monitored using specific cell surface markers by flow cytometry. Proteomics analysis of SF samples was performed to detect additional markers specific to mast cells and inflammation that drive the cell differentiation and maturation. Results: Transcriptomics of osteophytes revealed a significant upregulation of mast cells specific genes such as chymase 1 (CMA1; 5-fold) carboxypeptidase A3 (CPA3; 4-fold), MS4A2/FCERI (FCERI; 4.2-fold) and interleukin 1 receptor-like 1 (IL1RL1; 2.5-fold) indicating their prominent involvement. (In IHC, anti-tryptase alpha/beta-1 and anti- FC epsilon RI-stained active mast cells were seen populated in cartilage, subchondral bone, and trabecular bone.) Based on these outcomes and previous learnings, the authors claim a possibility of mast cells invasion into osteophytes is mediated by SF and present in vitro cell differentiation assay results, wherein ThP1 and HSCs showed differentiation into HLA-DR+/CD206+ and FCERI+ phenotype, respectively, after exposing them to medium containing 10% SF for 9 days. Proteomics analysis of these SF samples showed an accumulation of mast cell-specific inflammatory proteins. Conclusions: RNA-seq analysis followed by IHC study on osteophyte samples showed a population of mast cells resident in them and may further accentuate inflammatory pathology of OA. Besides subchondral bone, the authors propose an alternative passage of mast cells invasion in osteophytes, wherein OA SF was found to be necessary and sufficient for maturation of mast cell precursor into effector cells.

Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 109
Zoltán Somogyi ◽  
Patrik Mag ◽  
Dóra Kovács ◽  
Ádám Kerek ◽  
Pál Szabó ◽  

Florfenicol is a member of the phenicol group, a broad-spectrum antibacterial agent. It has been used for a long time in veterinary medicine, but there are some factors regarding its pharmacokinetic characteristics that have yet to be elucidated. The aim of our study was to describe the pharmacokinetic profile of florfenicol in synovial fluid and plasma of swine after intramuscular (i.m.) administration. In addition, the dosage regimen of treatment of arthritis caused by S. suis was computed for florfenicol using pharmacokinetic/pharmacodynamic (PK/PD) indices. As the first part of our investigation, the pharmacokinetic (PK) parameters of florfenicol were determined in the plasma and synovial fluid of six pigs. Following drug administration (15 mg/kgbw, intramuscularly), blood was drawn at the following times: 10, 20, 30, 40, 50 and 60 min, 2, 3, 4, 5, 6, 7, 8, 12, 24, 48 and 72 h; synovial fluid samples were taken after 1, 2, 3, 4, 6, 8, 12, 24, 48 and 72 h. The concentration of florfenicol was determined by a validated liquid chromatography-mass spectrometry (LC-MS/MS) method via multiple reaction monitoring (MRM) modes. As the second part of our research, minimum inhibitory concentration (MIC) values of florfenicol were determined in 45 S. suis strains isolated from clinical samples collected in Hungary. Furthermore, a strain of S. suis serotype 2 (SS3) was selected, and killing-time curves of different florfenicol concentrations (0.5 µg/mL, 1 µg/mL and 2 µg/mL) were determined against this strain. Peak concentration of the florfenicol was 3.58 ± 1.51 µg/mL in plasma after 1.64 ± 1.74 h, while it was 2.73 ± 1.2 µg/mL in synovial fluid 3.4 ± 1.67 h after administration. The half-life in plasma was found to be 17.24 ± 9.35 h, while in synovial fluid it was 21.01 ± 13.19 h. The area under the curve (AUC24h) value was 54.66 ± 23.34 μg/mL·h for 24 h in plasma and 31.24 ± 6.82 μg/mL·h for 24 h in synovial fluid. The drug clearance scaled by bioavailability (Cl/F) in plasma and synovial fluid was 0.19 ± 0.08 L/h/kg and 0.29 ± 0.08 L/h/kg, respectively. The mean residence time (MRT) in plasma and synovial fluid was 24.0 ± 13.59 h and 27.39 ± 17.16 h, respectively. The steady-state volume of distribution (Vss) in plasma was calculated from Cl/F of 0.19 ± 0.08 L/h/kg, multiplied by MRT of 24.0 ± 13.59 h. For the PK/PD integration, average plasma and synovial fluid concentration of florfenicol was used in a steady-state condition. The obtained MIC50 value of the strains was 2.0 µg/mL, and MIC90 proved to be 16.0 µg/mL. PK/PD integration was performed considering AUC24h/MIC breakpoints that have already been described. This study is the first presentation of the pharmacokinetic behavior of florfenicol in swine synovia as well as a recommendation of extrapolated critical MICs of S. suis for therapeutic success in the treatment of S. suis arthritis in swine, but it should be noted that this requires a different dosage regimen to that used in authorized florfenicol formulations.

2022 ◽  
pp. 101727
Yuji Kohno ◽  
Mitsuru Mizuno ◽  
Kentaro Endo ◽  
Nobutake Ozeki ◽  
Hisako Katano ◽  

Tribologia ◽  
2021 ◽  
Vol 297 (3) ◽  
pp. 45-56
Krzysztof Wierzcholski ◽  
Jacek Gospodarczyk

This paper presents recent progress in the knowledge concerning the stochastic theory of bio- hydrodynamic lubrication with a phospholipids bilayer. On the basis of experimental measurements and analytical solutions, the research concerns the determination of the random expectancy values of load carrying capacity, the friction coefficient, and synovial fluid dynamic variations. After numerous measurements, it directly follows that the random density function of the gap height in the human joint usually indicates a disorderly increases and decreases in the height. Such irregular gap height variations have an important influence on the random synovial bio-fluid dynamic viscosity. This finally leads to the friction coefficient and cartilage wear changes of cooperating bio- surfaces. The main topic of this paper relates to the expectancy values of the tribology parameters localized inside the variable stochastic standard deviation intervals of the human joint gap height. The results obtained finally indicate the influence of the random roughness and growth of living biological cartilage surfaces on the expectancy values of the synovial fluid dynamic viscosity, load carrying capacity and friction forces in human hip joints.

Sign in / Sign up

Export Citation Format

Share Document