adoptive transfer
Recently Published Documents


TOTAL DOCUMENTS

1640
(FIVE YEARS 209)

H-INDEX

91
(FIVE YEARS 10)

Author(s):  
Megan A Sylvester ◽  
Dennis P Pollow ◽  
Caitlin Moffett ◽  
Wendy Nunez ◽  
Jennifer L Uhrlaub ◽  
...  

Premenopausal females are protected from Angiotensin II (Ang II)-induced hypertension following the adoptive transfer of T cells from normotensive donors. For the present study, we hypothesized that the transfer of hypertensive T cells (HT) or splenocytes (HS) from hypertensive donors would eliminate premenopausal protection from hypertension. Premenopausal Rag-1-/- females received either normotensive (NT) or hypertensive cells, three weeks prior to Ang II infusion (14 days, 490 ng/kg/min). Contrary to our hypothesis, no increase in Ang II-induced blood pressure was observed in the NT/Ang or HT/Ang groups. Flow cytometry demonstrated that renal FoxP3+ T regulatory cells were significantly decreased and IHC showed an increase in renal F4/80+ macrophages in HT/Ang, suggesting a shift in the renal inflammatory environment despite no change in blood pressure. Renal mRNA expression of MCP-1, Endothelin-1, GPER-1 were significantly decreased in HT/Ang. The adoptive transfer of hypertensive splenocytes prior to Ang II infusion (HS/Ang) eliminated premenopausal protection from hypertension and significantly decreased splenic FoxP3+ T regulatory cells compared to females receiving normotensive splenocytes (NS/Ang). Expression of MIP-1a/CCL3, a potent macrophage chemokine was elevated in HS/Ang, however no increase in renal macrophage infiltration occurred. Together, these data show that in premenopausal females T cells from hypertensive donors are not sufficient to induce a robust Ang II mediated hypertension, in contrast, transfer of hypertensive splenocytes (consisting of T/B lymphocytes, dendritic cells, macrophages) is sufficient. Further work is needed to understand how innate and adaptive immune cells and estrogen signaling coordinate to cause differential hypertensive outcomes in premenopausal females.


npj Vaccines ◽  
2022 ◽  
Vol 7 (1) ◽  
Author(s):  
Lisa H. Tostanoski ◽  
Abishek Chandrashekar ◽  
Shivani Patel ◽  
Jingyou Yu ◽  
Catherine Jacob-Dolan ◽  
...  

AbstractSARS-CoV-2 Spike-specific binding and neutralizing antibodies, elicited either by natural infection or vaccination, have emerged as potential correlates of protection. An important question, however, is whether vaccine-elicited antibodies in humans provide direct, functional protection from SARS-CoV-2 infection and disease. In this study, we explored directly the protective efficacy of human antibodies elicited by Ad26.COV2.S vaccination by adoptive transfer studies. IgG from plasma of Ad26.COV2.S vaccinated individuals was purified and transferred into naïve golden Syrian hamster recipients, followed by intra-nasal challenge of the hamsters with SARS-CoV-2. IgG purified from Ad26.COV2.S-vaccinated individuals provided dose-dependent protection in the recipient hamsters from weight loss following challenge. In contrast, IgG purified from placebo recipients provided no protection in this adoptive transfer model. Attenuation of weight loss correlated with binding and neutralizing antibody titers of the passively transferred IgG. This study suggests that Ad26.COV2.S-elicited antibodies in humans are mechanistically involved in protection against SARS-CoV-2.


2022 ◽  
Vol 12 ◽  
Author(s):  
Keun Young Min ◽  
Jimo Koo ◽  
Geunwoong Noh ◽  
Dajeong Lee ◽  
Min Geun Jo ◽  
...  

Effector and regulatory functions of various leukocytes in allergic diseases have been well reported. Although the role of conventional natural killer (NK) cells has been established, information on its regulatory phenotype and function are very limited. Therefore, the objective of this study was to investigate the phenotype and inhibitory functions of transforming growth factor (TGF)-β-producing regulatory NK (NKreg) subset in mice with MC903-induced atopic dermatitis (AD). Interestingly, the population of TGF-β-producing NK cells in peripheral blood monocytes (PBMCs) was decreased in AD patients than in healthy subjects. The number of TGF-β+ NK subsets was decreased in the spleen or cervical lymph node (cLN), but increased in ear tissues of mice with AD induced by MC903 than those of normal mice. We further observed that TGF-β+ NK subsets were largely included in CD1dhiPD-L1hiCD27+ NK cell subset. We also found that numbers of ILC2s and TH2 cells were significantly decreased by adoptive transfer of CD1dhiPD-L1hiCD27+ NK subsets. Notably, the ratio of splenic Treg per TH2 was increased by the adoptive transfer of CD1dhiPD-L1hiCD27+ NK cells in mice. Taken together, our findings demonstrate that the TGF-β-producing CD1dhiPD-L1hiCD27+ NK subset has a previously unrecognized role in suppressing TH2 immunity and ILC2 activation in AD mice, suggesting that the function of TGF-β-producing NK subset is closely associated with the severity of AD in humans.


2021 ◽  
Author(s):  
Jeffrey R Atkinson ◽  
Andrew D Jerome ◽  
Andrew R Sas ◽  
Ashley Munie ◽  
William David Arnold ◽  
...  

Biological aging is the strongest factor associated with the clinical phenotype of multiple sclerosis (MS). Relapsing remitting MS (RRMS) typically presents in the third or fourth decade, while the mean age of presentation of progressive MS (pMS) is 45 years old. Here we show that experimental autoimmune encephalomyelitis (EAE), induced by the adoptive transfer of encephalitogenic CD4+ Th17 cells, is more severe, and less like to remit, in middle-aged compared with young adult mice. Donor T cells and neutrophils are more abundant, while B cells are relatively sparse, in central nervous system (CNS) infiltrates of the older mice. Experiments with reciprocal bone marrow chimeras demonstrate that radio-resistant, non-hematopoietic cells play a dominant role in shaping age-related features of the neuroinflammatory response, as well as the clinical course, during EAE. Reminiscent of pMS, EAE in middle-aged adoptive transfer recipients is characterized by widespread microglial activation. Microglia from older mice express a distinctive transcriptomic profile, suggestive of enhanced chemokine synthesis and antigen presentation. Collectively, our findings suggest that drugs that suppress microglial activation, and acquisition or expression of aging-associated properties, may be beneficial in the treatment of progressive forms of inflammatory demyelinating disease.


2021 ◽  
Author(s):  
Farooq Syed ◽  
Divya Singhal ◽  
Koen Raedschelders ◽  
Preethi Krishnan ◽  
Robert N. Bone ◽  
...  

Background: Activation of stress pathways intrinsic to the β cell are thought to both accelerate β cell death and increase β cell immunogenicity in type 1 diabetes (T1D). However, information on the timing and scope of these responses is lacking. Methods: To identify temporal and disease-related changes in islet β cell protein expression, data independent acquisition-mass spectrometry was performed on islets collected longitudinally from NOD mice and NOD-SCID mice rendered diabetic through T cell adoptive transfer. Findings: In islets collected from female NOD mice at 10, 12, and 14 weeks of age, we found a time-restricted upregulation of proteins involved in the maintenance of β cell function and stress mitigation, followed by loss of expression of protective proteins that heralded diabetes onset. Pathway analysis identified EIF2 signaling and the unfolded protein response, mTOR signaling, mitochondrial function, and oxidative phosphorylation as commonly modulated pathways in both diabetic NOD mice and NOD-SCID mice rendered acutely diabetic by adoptive transfer, highlighting this core set of pathways in T1D pathogenesis. In immunofluorescence validation studies, β cell expression of protein disulfide isomerase A1 (PDIA1) and 14-3-3b were found to be increased during disease progression in NOD islets, while PDIA1 plasma levels were increased in pre-diabetic NOD mice and in the serum of children with recent-onset T1D compared to age and sex-matched non-diabetic controls. Interpretation: We identified a common and core set of modulated pathways across distinct mouse models of T1D and identified PDIA1 as a potential human biomarker of β cell stress in T1D.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lisa Sandner ◽  
Marlis Alteneder ◽  
Ci Zhu ◽  
Anastasiya Hladik ◽  
Sandra Högler ◽  
...  

T helper (Th) 17 cells are not only key in controlling infections mediated by extracellular bacteria and fungi but are also triggering autoimmune responses. Th17 cells comprise heterogeneous subsets, some with pathogenic functions. They can cease to secrete their hallmark cytokine IL-17A and even convert to other T helper lineages, a process known as transdifferentiation relying on plasticity. Both pathogenicity and plasticity are tightly linked to IL-23 signaling. Here, we show that the protein tyrosine kinase Tec is highly induced in Th17 cells. Th17 differentiation was enhanced at low interleukin-6 (IL-6) concentrations in absence of Tec, which correlates with increased STAT3 phosphorylation and higher Il23r expression. Therefore, we uncovered a function for Tec in the IL-6 sensing via STAT3 by CD4+ T cells, defining Tec as a fine-tuning negative regulator of Th17 differentiation. Subsequently, by using the IL-17A fate mapping mouse combined with in vivo adoptive transfer models, we demonstrated that Tec not only restrained effector Th17 differentiation but also pathogenicity and plasticity in a T-cell intrinsic manner. Our data further suggest that Tec regulates inflammatory Th17-driven immune responses directly impacting disease severity in a T-cell-driven colitis model. Notably, consistent with the in vitro findings, elevated levels of the IL-23 receptor (IL-23R) were observed on intestinal pre- and postconversion Th17 cells isolated from diseased Tec−/− mice subjected to adoptive transfer colitis, highlighting a fundamental role of Tec in restraining IL-23R expression, likely via the IL-6-STAT3 signaling axis. Taken together, these findings identify Tec as a negative regulator of Th17 differentiation, pathogenicity, and plasticity, contributing to the mechanisms which help T cells to orchestrate optimal immune protection and to restrain immunopathology.


2021 ◽  
Author(s):  
María Fernanda Lammoglia Cobo ◽  
Julia Ritter ◽  
Regina Gary ◽  
Volkhard Seitz ◽  
Josef Mautner ◽  
...  

Reconstitution of T cell repertoire after allogeneic stem cell transplantation is a long and often incomplete process. As a result, reactivation of Epstein-Barr virus (EBV) is a frequent complication that may be treated by adoptive transfer of donor-derived EBV-specific T cells. We generated donor-derived EBV-specific T cells by peptide stimulation and adoptively transferred them to a patient with angioimmunoblastic T-cell lymphoma (AITL), who had developed persisting high titers of EBV concomitant to relapse after transplantation. T cell receptor beta (TCRβ) deep sequencing showed that the T cell repertoire of the patient early after transplantation (day 60) was strongly reduced and only very low numbers of EBV-specific T cells were detectable. Manufacturing and in vitro expansion of donor-derived EBV-specific T cells resulted in enrichment of EBV epitope-specific, HLA-restricted T cells. Monitoring after adoptive transfer revealed that the dominant TCR sequences from peptide-stimulated T cells persisted long-term and established an EBV-specific TCR clonotype repertoire in the host, with many of the EBV-specific TCRs present in the donor. This reconstituted repertoire was associated with immunological control of EBV and with lack of further AITL relapse.


2021 ◽  
Vol 2021 (12) ◽  
pp. pdb.prot100347
Author(s):  
Edward A. Greenfield

This procedure is designed to enrich and expand antibody-forming cells for use in generating monoclonal antibodies. Gamma-irradiation is used to wipe out the immune system in a recipient animal, after which spleen cells that have reverted to memory cells are obtained from syngeneic donor animals and transferred to the irradiated animal, allowing the implanted immune cells to take over. This method can produce an 80-fold enrichment of antibody-producing cells over that obtained in the original immunized animal.


Sign in / Sign up

Export Citation Format

Share Document