oleanolic acid
Recently Published Documents


TOTAL DOCUMENTS

1273
(FIVE YEARS 306)

H-INDEX

56
(FIVE YEARS 8)

2022 ◽  
Vol 176 ◽  
pp. 114368
Author(s):  
Yue Sui ◽  
Jia-Xi Liu ◽  
Yue Zhao ◽  
Wen-Hua Guo ◽  
Jin-Ling Dai ◽  
...  

2022 ◽  
Author(s):  
Natalia A. Luchnikova ◽  
Polina Yu. Maltseva ◽  
Victoria V. Grishko ◽  
Irina B. Ivshina

The ability of actinobacteria of the genus Rhodococcus to transform oleanolic acid (OA), a plant pentacyclic triterpenoid, was shown for the first time using bioresources of the Regional Specialized Collection of AlkanotrophicMicroorganisms (IEGM; WDCM #768;www.iegmcol.ru). The most promising strains (R.opacus IEGM 488 and R.rhodochrousIEGM 285) were selected, and these catalyzed80% bioconversion of OA (0.5 g/L) in the presence of n-hexadecane (0.1% v/v) for seven days. The process of OA bioconversion was accompanied by a gradual decrease in the culture medium pH. Adaptive responses of bacterial cells to the OA effects included the formation of compact cellular aggregates, a marked change in the surface-to-volume ratio of cells, and a significant increase in the Zeta potential values. The results demonstrated that the process of OA bioconversion was catalyzed by membrane-bound enzyme complexes. Participation of cytochrome P450-dependent monooxygenases in the oxidation of the OA moleculewas confirmedusing specific inhibitors. The obtained data expand our knowledge on the catalytic activity of actinobacteria of the genus Rhodococcus and their possible use as biocatalysts for the bioconversion of complex hydrophobic compounds. The results can also be used inthe searchfor promising OA derivatives to be used in the synthesis of biologically active agents. Keywords: bioconversion, oleanolic acid, Rhodococcus, biologically active compounds


2022 ◽  
Vol 37 (1) ◽  
pp. 451-461
Author(s):  
Xu-Yang Deng ◽  
Jun-Jie Ke ◽  
Ying-Ying Zheng ◽  
Dong-Li Li ◽  
Kun Zhang ◽  
...  

2022 ◽  
Author(s):  
Berly Cárdenas-Pillco ◽  
Lizbeth Campos-Olazaval ◽  
Patricia López ◽  
Jorge Alberto Aguilar-Pineda ◽  
Pamela Lily Gamero-Begazo ◽  
...  

Abstract Colorectal cancer (CRC) disease has a high mortality rate and has recently involved human profilin II (Pfn2), an actin-binding protein, as a promoter of its invasiveness and progression. This work evaluated the binding affinity of oleanolic acid saponin over Pfn2 and its structural stability. QM and MM techniques were applied to perform geometrical optimization and calculation of the reactive sites from oleanolic acid, whereas molecular docking and MD simulations for protein-ligand interaction under physiological conditions. Oleanolic acid saponin showed a high binding affinity to the Pfn2 PLPbinding site. Analysis of the protein-ligand structure suggests saponin as a molecule with high potential for developing new drugs against Pfn2 in colorectal cancer cells.


Author(s):  
Fumiyuki Kiuchi

AbstractAchyranthes root is a crude drug used as diuretic, tonic and remedy for blood stasis. Characteristic oleanolic acid saponins with a dicarboxylic acid moiety have been isolated as one of the representative constituents of this crude drug. This review focuses on the triterpene saponin constituents, especially those with a characteristic dicarboxylic acid moiety, of A. bidentata and A. fauriei. Several groups isolated the saponins and different names were given to one compound in some cases. The names of the compounds are sorted out and the stereochemistry of the dicarboxylic acid moieties are summarized. HPLC analysis of the composition of the saponin constituents and the effect of processing and extraction conditions on the composition are reviewed. Biological activities of the saponin constituents are also summarized.


2021 ◽  
Vol 30 (6) ◽  
pp. 401-414
Author(s):  
Shi-Chang Cai ◽  
Xiu-Ping Li ◽  
Xing Li ◽  
Gen-Yun Tang ◽  
Li-Ming Yi ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260956
Author(s):  
Benjamin Kingsley Harley ◽  
David Neglo ◽  
Philip Tawiah ◽  
Mercy Adansi Pipim ◽  
Nana Ama Mireku-Gyimah ◽  
...  

Vulvovaginal candidiasis (VVC) is the second most common vaginal infection that affects women of reproductive age. Its increased occurrence and associated treatment cost coupled to the rise in resistance of the causative pathogen to current antifungal therapies has necessitated the need for the discovery and development of novel effective antifungal agents for the treatment of the disease. We report in this study the anti-Candida albicans activity of Solanum torvum 70% ethanol fruit extract (STF), fractions and some isolated compounds against four (4) fluconazole-resistant strains of C. albicans. We further report on the effect of the isolated compounds on the antifungal activity of fluconazole and voriconazole in the resistant isolates as well as their inhibitory effect on C. albicans biofilm formation. STF was fractionated using n-hexane, chloroform (CHCl3) and ethyl acetate (EtOAc) to obtain four respective major fractions, which were then evaluated for anti-C. albicans activity using the microbroth dilution method. The whole extract and fractions recorded MICs that ranged from 0.25 to 16.00 mg/mL. From the most active fraction, STF- CHCl3 (MIC = 0.25–1.00 mg/mL), four (4) known compounds were isolated as Betulinic acid, 3-oxo-friedelan-20α-oic acid, Sitosterol-3-β-D-glucopyranoside and Oleanolic acid. The compounds demonstrated considerably higher antifungal activity (0.016 to 0.512 mg/mL) than the extract and fractions and caused a concentration-dependent anti-biofilm formation activity. They also increased the sensitivity of the C. albicans isolates to fluconazole. This is the first report of 3-oxo-friedelan-20α-oic acid in the plant as well as the first report of betulinic acid, sitosterol-3-β-D-glucopyranoside and oleanolic acid from the fruits of S. torvum. The present study has demonstrated the anti-C. albicans activity of the constituents of S. torvum ethanol fruit extract and also shown that the constituents possess anti-biofilm formation and resistance modulatory activities against fluconazole-resistant clinical C. albicans isolates.


Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 19
Author(s):  
Souleymane Fofana ◽  
Moussa Ouédraogo ◽  
Rafaèle Calvo Esposito ◽  
Windbedema Prisca Ouedraogo ◽  
Cédric Delporte ◽  
...  

The objective of this study was to carry out a systematic review of the substances isolated from the African medicinal plant Erythrina senegalensis, focusing on compounds harboring activities against cancer models detailed in depth herein at both in vitro and in vivo preclinical levels. The review was conducted through Pubmed and Google Scholar. Nineteen out of the forty-two secondary metabolites isolated to date from E. senegalensis displayed interesting in vitro and/or in vivo antitumor activities. They belonged to alkaloid (Erysodine), triterpenes (Erythrodiol, maniladiol, oleanolic acid), prenylated isoflavonoids (senegalensin, erysenegalensein E, erysenegalensein M, alpinumisoflavone, derrone, warangalone), flavonoids (erythrisenegalone, senegalensein, lupinifolin, carpachromene) and pterocarpans (erybraedine A, erybraedine C, phaseollin). Among the isoflavonoids called “erysenegalensein”, only erysenealenseins E and M have been tested for their anticancerous properties and turned out to be cytotoxic. Although the stem bark is the most frequently used part of the plant, all pterocarpans were isolated from roots and all alkaloids from seeds. The mechanisms of action of its metabolites include apoptosis, pyroptosis, autophagy and mitophagy via the modulation of cytoplasmic proteins, miRNA and enzymes involved in critical pathways deregulated in cancer. Alpinumisoflavone and oleanolic acid were studied in a broad spectrum of cancer models both in vitro and in preclinical models in vivo with promising results. Other metabolites, including carpachromen, phaseollin, erybraedin A, erysenegalensein M and maniladiol need to be further investigated, as they display potent in vitro effects.


Sign in / Sign up

Export Citation Format

Share Document