Ceramic Matrix Composites and Ceramic Fibers and Whiskers

1988 ◽  
Vol 3 (8) ◽  
pp. 6-7
Author(s):  
Thomas Abraham
2004 ◽  
Vol 843 ◽  
Author(s):  
Jun C. Nable ◽  
Shaneela Nosheen ◽  
Steven L. Suib ◽  
Francis S. Galasso ◽  
Michael A. Kmetz

ABSTRACTInterface coatings on fibers are important in ceramic matrix composites. In addition to providing toughness, the interface coating must also protect the reinforcing ceramic fibers from corrosive degradation. A double interface coating has been applied onto silicon carbide fibers. The double interface coating is comprised of a combination of nitride and oxide coatings. Among the nitrides, boron nitride and titanium nitride were utilized. These nitrides were deposited by CVD. The metal oxides of choice were aluminum oxide and zirconium oxide which were applied onto the nitride coatings by MOCVD. The phases on the coated fibers were determined by XRD. The surface coating microstructures were observed by SEM. The effect of the coatings on the tensile strengths was determined by Instron tensile strength measurements.


2022 ◽  
Vol 11 (2) ◽  
pp. 197-246
Author(s):  
Qingbo Wen ◽  
Fangmu Qu ◽  
Zhaoju Yu ◽  
Magdalena Graczyk-Zajac ◽  
Xiang Xiong ◽  
...  

AbstractSince the 1960s, a new class of Si-based advanced ceramics called polymer-derived ceramics (PDCs) has been widely reported because of their unique capabilities to produce various ceramic materials (e.g., ceramic fibers, ceramic matrix composites, foams, films, and coatings) and their versatile applications. Particularly, due to their promising structural and functional properties for energy conversion and storage, the applications of PDCs in these fields have attracted much attention in recent years. This review highlights the recent progress in the PDC field with the focus on energy conversion and storage applications. Firstly, a brief introduction of the Si-based polymer-derived ceramics in terms of synthesis, processing, and microstructure characterization is provided, followed by a summary of PDCs used in energy conversion systems (mainly in gas turbine engines), including fundamentals and material issues, ceramic matrix composites, ceramic fibers, thermal and environmental barrier coatings, as well as high-temperature sensors. Subsequently, applications of PDCs in the field of energy storage are reviewed with a strong focus on anode materials for lithium and sodium ion batteries. The possible applications of the PDCs in Li-S batteries, supercapacitors, and fuel cells are discussed as well. Finally, a summary of the reported applications and perspectives for future research with PDCs are presented.


1992 ◽  
Vol 10 (3) ◽  
pp. 237-243 ◽  
Author(s):  
B. Meier ◽  
G. Grathwohl ◽  
M. Spallek ◽  
W. Pannhorst

1995 ◽  
Vol 191 (1-2) ◽  
pp. 249-256 ◽  
Author(s):  
Chao M. Huang ◽  
Youren Xu ◽  
Fulin Xiong ◽  
Avigdor Zangvil ◽  
Waltraud M. Kriven

Author(s):  
Tapan Roy

Ceramic fibers are being used to improve the mechanical properties of metal matrix and ceramic matrix composites. This paper reports a study of the structural and other microstructural characteristics of silicon nitride whiskers using both conventional TEM and high resolution electron microscopy.The whiskers were grown by T. E. Scott of Michigan Technological University, by passing nitrogen over molten silicon in the presence of a catalyst. The whiskers were ultrasonically dispersed in chloroform and picked up on holey carbon grids. The diameter of some whiskers (<70nm) was small enough to allow direct observation without thinning. Conventional TEM was performed on a Philips EM400T while high resolution imaging was done on a JEOL 200CX microscope with a point to point resolution of 0.23nm.


Sign in / Sign up

Export Citation Format

Share Document