Effects of ion–water Lennard-Jones potentials on the hydration dynamics around a monovalent atomic ion in molecular dynamics simulations

2019 ◽  
Vol 46 (2) ◽  
pp. 83-91
Author(s):  
Kota Kasahara ◽  
Yuki Takimoto ◽  
Ryoi Ashida ◽  
Takuya Takahashi
2021 ◽  
Author(s):  
Martin P. Lautenschlaeger ◽  
Hans Hasse

It was shown recently that using the two-gradient method, thermal, caloric, and transport properties of fluids under quasi-equilibrium conditions can be determined simultaneously from nonequilibrium molecular dynamics simulations. It is shown here that the influence of shear stresses on these properties can also be studied using the same method. The studied fluid is described by the Lennard-Jones truncated and shifted potential with the cut-off radius r*c = 2.5σ. For a given temperature T and density ρ, the influence of the shear rate on the following fluid properties is determined: pressure p, internal energy u, enthalpy h, isobaric heat capacity cp, thermal expansion coefficient αp, shear viscosity η, and self-diffusion coefficient D. Data for 27 state points in the range of T ∈ [0.7, 8.0] and ρ ∈ [0.3, 1.0] are reported for five different shear rates (γ ̇ ∈ [0.1,1.0]). Correlations for all properties are provided and compared with literature data. An influence of the shear stress on the fluid properties was found only for states with low temperature and high density. The shear-rate dependence is caused by changes in the local structure of the fluid which were also investigated in the present work. A criterion for identifying the regions in which a given shear stress has an influence on the fluid properties was developed. It is based on information on the local structure of the fluid. For the self-diffusivity, shear-induced anisotropic effects were observed and are discussed.


2000 ◽  
Vol 634 ◽  
Author(s):  
A. Kuronen ◽  
K. Kaski ◽  
L. F. Perondi ◽  
J. Rintala

ABSTRACTMechanisms responsible for the formation of a misfit dislocation in a lattice-mismatched system have been studied using Molecular Dynamics simulations of a two-dimensional Lennard-Jones system. Results show clearly how the strain due to the lattice-mismatched interface acts as a driving force for migration of dislocations in the substrate and the overlayer and nucleation of dislocations in the overlayer edges. Moreover, we observe dislocation reactions in which the gliding planes of dislocations change such that they can migrate to the interface.


Sign in / Sign up

Export Citation Format

Share Document