Rotational motion in the laboratory frame

2021 ◽  
pp. 1-6
Author(s):  
William Smith
Author(s):  
J. H. Butler ◽  
C. J. Humphreys

Electromagnetic radiation is emitted when fast (relativistic) electrons pass through crystal targets which are oriented in a preferential (channelling) direction with respect to the incident beam. In the classical sense, the electrons perform sinusoidal oscillations as they propagate through the crystal (as illustrated in Fig. 1 for the case of planar channelling). When viewed in the electron rest frame, this motion, a result of successive Bragg reflections, gives rise to familiar dipole emission. In the laboratory frame, the radiation is seen to be of a higher energy (because of the Doppler shift) and is also compressed into a narrower cone of emission (due to the relativistic “searchlight” effect). The energy and yield of this monochromatic light is a continuously increasing function of the incident beam energy and, for beam energies of 1 MeV and higher, it occurs in the x-ray and γ-ray regions of the spectrum. Consequently, much interest has been expressed in regard to the use of this phenomenon as the basis for fabricating a coherent, tunable radiation source.


2019 ◽  
Vol XVI (2) ◽  
pp. 13-22
Author(s):  
Muhammad Ehtisham Siddiqui

Three-dimensional boundary-layer flow is well known for its abrupt and sharp transition from laminar to turbulent regime. The presented study is a first attempt to achieve the target of delaying the natural transition to turbulence. The behaviour of two different shaped and sized stationary disturbances (in the laboratory frame) on the rotating-disk boundary layer flow is investigated. These disturbances are placed at dimensionless radial location (Rf = 340) which lies within the convectively unstable zone over a rotating-disk. Mean velocity profiles were measured using constant-temperature hot-wire anemometry. By careful analysis of experimental data, the instability of these disturbance wakes and its estimated orientation within the boundary-layer were investigated.


2020 ◽  
Vol 53 (2) ◽  
pp. 14888-14893
Author(s):  
Demet Cilden-Guler ◽  
Zerefsan Kaymaz ◽  
Chingiz Hajiyev

Sign in / Sign up

Export Citation Format

Share Document