A dual-stage functional modelling framework with multi-level design knowledge for conceptual mechanical design

2000 ◽  
Vol 11 (4) ◽  
pp. 347-375 ◽  
Author(s):  
Y.-M. Deng ◽  
S. B. Tor ◽  
G. A. Britton
Author(s):  
Hyunmin Cheong ◽  
Wei Li ◽  
Francesco Iorio

This paper presents a novel application of gamification for collecting high-level design descriptions of objects. High-level design descriptions entail not only superficial characteristics of an object, but also function, behavior, and requirement information of the object. Such information is difficult to obtain with traditional data mining techniques. For acquisition of high-level design information, we investigated a multiplayer game, “Who is the Pretender?” in an offline context. Through a user study, we demonstrate that the game offers a more fun, enjoyable, and engaging experience for providing descriptions of objects than simply asking people to list them. We also show that the game elicits more high-level, problem-oriented requirement descriptions and less low-level, solution-oriented structure descriptions due to the unique game mechanics that encourage players to describe objects at an abstract level. Finally, we present how crowdsourcing can be used to generate game content that facilitates the gameplay. Our work contributes towards acquiring high-level design knowledge that is essential for developing knowledge-based CAD systems.


Author(s):  
Sungwoo Jang ◽  
Hae-Jin Choi

Integrated Materials and Products Design (IMPD) differs in the way that materials as well as product layout are designed or optimized in a concurrent manner to meet design requirements. IMPD allows the specific performance required in a product to be achieved by tailoring materials and product, since system performance will not be limited by a pre-chosen material employed in conventional, material-selection-based design. In this study, Blast Resistance Panels (BRPs) with square honeycomb core are designed based on this new design approach to further enhance the performance of BRPs. We employ multi-level design methods for the integrated design of blast resistance panels and materials. Along with the traditional multi-level optimization of BRP, another design approach, Analytical Target Cascading (ATC) is introduced for a comparative design study in the BRP design. In this article, we compare the design results and design exploration efficiency of the two multi-level design methods in designing the blast resistance panels as well as those materials. We also discuss the advantage and disadvantage of the methods observed in this study.


CIRP Annals ◽  
2015 ◽  
Vol 64 (1) ◽  
pp. 149-152 ◽  
Author(s):  
Pasquale Franciosa ◽  
Dariusz Ceglarek

2012 ◽  
Vol 605-607 ◽  
pp. 365-370
Author(s):  
Jia Li ◽  
Yun Bin Yang ◽  
Li Fan Wei

Knowledge Based Engineering (KBE) helps sharing and reusing knowledge in modern mechanical design field. As a core part of KBE, various methods of knowledge representation were studied. In order to reuse the mechanical design knowledge, the methodology of ontology-based knowledge representation was discussed. First, the concepts, formal description, specialties and languages of ontology were described. Then, three categories of ontology in the field of mechanical design, general ontology, domain ontology and product ontology, were discussed. The product ontology was analyzed by the configuration design method. Finally, an example of ontology-based knowledge representation for mechanical products was studied. The work about ontology-based knowledge representation methodology may support the application of KBE in mechanical design field.


2013 ◽  
Vol 61 (7) ◽  
pp. 2612-2623 ◽  
Author(s):  
M. Uppal ◽  
G. Yue ◽  
Yan Xin ◽  
Xiaodong Wang ◽  
Zixiang Xiong

Sign in / Sign up

Export Citation Format

Share Document