vibrio fischeri
Recently Published Documents


TOTAL DOCUMENTS

866
(FIVE YEARS 169)

H-INDEX

77
(FIVE YEARS 7)

2021 ◽  
Vol 8 ◽  
Author(s):  
Liqi Wang ◽  
Shiming Lv ◽  
Xiaoying Wang ◽  
Baosheng Liu ◽  
Zhong Wang

The rise of novel mcr mobile resistance genes seriously threatens the use of colistin as a last resort antibiotic for treatment of multidrug-resistant Gram-negative bacterial infections in humans. Large quantities of colistin are released annually into the environment through animal feces. This leads to environmental toxicity and promotes horizontal transmission of the mcr gene in aqueous environments. We examined colistin degradation catalyzed by the presence of strong oxidant Fe (VI). We found almost complete colistin degradation (>95%) by Fe (VI) at initial colistin levels of 30 μM at a molar ratio of Fe (VI): colistin of 30 using an initial pH 7.0 at 25°C for 60 min. The presence of humic acid did not alter the degradation rate and had no significant impact on the removal of colistin by Fe (VI). Quantitative microbiological assays of Fe (VI)-treated colistin solutions using Escherichia coli, Staphylococcus aureus, and Bacillus subtilis indicated that the residual antibacterial activity was effectively eliminated by Fe (VI) oxidation. Luminescent bacteria toxicity tests using Vibrio fischeri indicated that both colistin and its degradation products in water were of low toxicity and the products showed decreased toxicity compared to the parent drug. Therefore, Fe (VI) oxidation is a highly effective and environment-friendly strategy to degrade colistin in water.


Membranes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 10
Author(s):  
Muhammed Iberia Aydin ◽  
Damla Ozaktac ◽  
Burak Yuzer ◽  
Mustafa Doğu ◽  
Hatice Inan ◽  
...  

In this study, a novel photoelectrocatalytic membrane (PECM) reactor was tested as an option for the desalination, disinfection, and detoxification of biologically treated textile wastewater (BTTWW), with the aim to reuse it in hydroponic farming. The anionic ion exchange (IEX) process was used before PECM treatment to remove toxic residual dyes. The toxicity evaluation for every effluent was carried out using the Vibrio fischeri, Microtox® test protocol. The disinfection effect of the PECM reactor was studied against E. coli. After PECM treatment, the 78.7% toxicity level of the BTTWW was reduced to 14.6%. However, photocatalytic desalination during treatment was found to be slow (2.5 mg L−1 min−1 at 1 V potential). The reactor demonstrated approximately 52% COD and 63% TOC removal efficiency. The effects of wastewater reuse on hydroponic production were comparatively investigated by following the growth of the lettuce plant. A detrimental effect was observed on the lettuce plant by the reuse of BTTWW, while no negative impact was reported using the PECM treated textile wastewater. In addition, all macro/micronutrient elements in the PECM treated textile wastewater were recovered by hydroponic farming, and the PECM treatment may be an eco-safe wastewater reuse method for crop irrigation.


2021 ◽  
pp. 52-62
Author(s):  
Paula Cristina Silva dos Santos ◽  
Mischelle Paiva dos Santos ◽  
Luiz Augusto de Oliveira Costa
Keyword(s):  

2021 ◽  
Vol 2 ◽  
Author(s):  
Z. Amadou Yacouba ◽  
G. Lesage ◽  
J. Mendret ◽  
F. Zaviska ◽  
E. Petit ◽  
...  

Occurrence of emerging organic micropollutants in water bodies and their effects are a concern related to quality of reused water. Advanced oxidation processes have demonstrated promising results to address this challenge. Nonetheless, these processes may lead to the generation of more toxic oxidation by-products. The aim of this study was to investigate the coupling of ozonation and nanofiltration (NF) applied to carbamazepine (CBZ). It consisted in monitoring the degradation and fate of CBZ and its subsequent by-products, their fate and toxicity. CBZ was completely degraded after 5 min of ozonation and six identified transformation by-products were formed: I (hydroxycarbamazepine), BQM [1-(2-benzaldehyde)-4-hydro-(1H, 3H)-quinazoline-2-one], II (2-(1H)-quinazolinone), BaQM [1-(2-benzoic acid)-4-hydro-(1H, 3H)-quinazoline-2-one], BQD [1-(2-benzaldehyde)-(1H, 3H)-quinazoline-2,4-dione] and BaQD [1-(2-benzoic acid)-(1H, 3H)-quinazoline-2,4-dione]. Mineralization rate of ozonation never exceeded 12% even with high ozone dose. Bioassays with Vibrio fischeri revealed that BQM and BQD are responsible for toxicity. NF is able to remove total organic carbon with removal rate up to 93% at 85% of permeate recovery rate. CBZ and its different ozonation by-products were almost completely retained by NF, except the II, which had an MW slightly lower than the membrane molecular weight cut-off, for which the removal rate was still between 80 and 96% depending on the recovery rate.


2021 ◽  
Vol 26 (6) ◽  
pp. 1033-1041
Author(s):  
Thalita Grando Rauen ◽  
Gidiane Scaratti ◽  
Reginaldo Geremias ◽  
Regina de Fátima Peralta Muniz Moreira

RESUMO Óxidos de ferro recuperados da drenagem ácida de minas representam uma matéria-prima potencial para a produção de baixo custo de nanogoetita ou nanohematita, com grau de pureza adequado para o seu uso como catalisador em processos de tratamento de efluentes líquidos com ozônio. Assim, a toxicidade das nanopartículas de ferro precisa ser determinada para prever seu impacto no meio ambiente, antes e depois de terem sido utilizadas nesses processos. Nesse contexto, o objetivo deste estudo foi avaliar a toxicidade de nanogoetita e nanohematita produzidas a partir da drenagem ácida de minas bem como comparar os resultados com hematita sintética de alta pureza. A nanogoetita foi obtida da drenagem ácida de minas e, após seu tratamento térmico a 450°C, produziu nanopartículas de hematita. Os materiais foram caracterizados por difração de raios X, microscopia eletrônica de transmissão e determinação da área superficial específica e porosidade com base nas isotermas de adsorção/dessorção de N2. Foram realizados os ensaios de ecotoxicidade usando os protocolos padronizados para bioluminescência com Vibrio fischeri, letalidade da Artemia sp., germinação de sementes de Lactuca sativa L. (alface) e crescimento das raízes de Allium cepa L. (cebola). Os resultados de toxicidade indicaram estabilidade das nanopartículas, que não são alteradas significativamente pela ação do ozônio em meio aquoso. Para todas as amostras, os valores indicaram baixa ou nenhuma toxicidade nas condições dos experimentos, para os bioindicadores utilizados. Esses resultados fornecem indicação de que as nanopartículas de ferro recuperadas da indústria de resíduos podem ser usadas como catalisadores sem efeitos adversos ao meio ambiente.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yeray Asensio ◽  
María Llorente ◽  
Alejandro Sánchez-Gómez ◽  
Carlos Manchon ◽  
Karina Boltes ◽  
...  

The capacity of electroactive bacteria to exchange electrons with electroconductive materials has been explored during the last two decades as part of a new field called electromicrobiology. Such microbial metabolism has been validated to enhance the bioremediation of wastewater pollutants. In contrast with standard materials like rods, plates, or felts made of graphite, we have explored the use of an alternative strategy using a fluid-like electrode as part of a microbial electrochemical fluidized bed reactor (ME-FBR). After verifying the low adsorption capacity of the pharmaceutical pollutants on the fluid-bed electrode [7.92 ± 0.05% carbamazepine (CBZ) and 9.42 ± 0.09% sulfamethoxazole (SMX)], our system showed a remarkable capacity to outperform classical solutions for removing pollutants (more than 80%) from the pharmaceutical industry like CBZ and SMX. Moreover, the ME-FBR performance revealed the impact of selecting an anode potential by efficiently removing both pollutants at + 200 mV. The high TOC removal efficiency also demonstrated that electrostimulation of electroactive bacteria in ME-FBR could overcome the expected microbial inhibition due to the presence of CBZ and SMX. Cyclic voltammograms revealed the successful electron transfer between microbial biofilm and the fluid-like electrode bed throughout the polarization tests. Finally, Vibrio fischeri-based ecotoxicity showed a 70% reduction after treating wastewater with a fluid-like anode (+ 400 mV), revealing the promising performance of this bioelectrochemical approach.


mBio ◽  
2021 ◽  
Author(s):  
Alice H. Tischler ◽  
Michael E. Vanek ◽  
Natasha Peterson ◽  
Karen L. Visick

Biofilm formation and motility are often critical behaviors for bacteria to colonize a host organism. Vibrio fischeri is the exclusive colonizer of its host’s symbiotic organ and requires both biofilm formation and motility to initiate successful colonization, providing a relatively simple model to explore complex behaviors. In this study, we determined how the environmental signal calcium alters bacterial behavior through production of the signaling molecule c-di-GMP.


2021 ◽  
Author(s):  
Hayley Popick ◽  
Markus Brinkmann ◽  
Kerry McPhedran

Abstract Stormwater results from precipitation events and melting snow running off urban landscapes and typically being released into receiving water bodies with little to no treatment. Despite evidence of its deleterious impacts, snowmelt (SM) management and treatment are limited, partly due to a lack of quality and loading data. This study examines snowmelt quality during the spring for a cold-climate, semi-arid Canadian city (Saskatoon, Saskatchewan). Four snow storage facilities receiving urban snow plowed from roads in mixed-land-use urban catchments (228 km2) were sampled including snow piles (five events) and SM (twelve events) runoff in 2019 and 2020. Samples were analyzed for pH, EC, TDS, TSS, COD, DOC, metals, chloride, PAHs, and Raphidocelis subcapitata and Vibrio fischeri toxicity. Notable event-specific TSS spikes occurred on April 13th, 2019 (3,513 mg/L) and April 24th, 2019 (3,838 mg/L), and TDS, chloride, and manganese on March 26th, 2020 (15,000 mg/L, 5,800 mg/L, 574 mg/L), April 17th, 2020 (5,200 mg/L, 2,600 mg/L, 882 mg/L), and April 23rd, 2020 (5,110 mg/L, 2,900 mg/L, 919 mg/L), though chloride remained elevated through May 1st, 2020 samples (1,000 mg/L). Additionally, at two sites sampled April 13th, 2019 pulses of aluminum (401 mg/L) and PAHs (pyrene, phenanthrene, anthracene; 71 µg/L, 317 µg/L, 182 µg/L) were detected. The EC50 for R. subcapitata and V. fischeri was observed, if at all, above expected toxicity thresholds.


2021 ◽  
Author(s):  
Hayley Popick ◽  
Markus Brinkmann ◽  
Kerry McPhedran

Abstract Background Stormwater is water resulting from precipitation events and snowmelt running off the urban landscape, collecting in storm sewers, and typically being released into receiving water bodies through outfalls with minimal to no treatment. Despite a growing body of evidence observing its deleterious pollution impacts, stormwater management and treatment in cold climates remains limited, partly due to a lack of quality and loading data and modelling parameters. This study examines the quality of stormwater discharging during the summer season in a cold-climate, semi-arid Canadian city (Saskatoon, Saskatchewan). Results Seven stormwater outfalls with mixed-land-use urban catchments >100 km2 were sampled for four summer (June-August 2019) storm events and analyzed for a suite of quality parameters, including total suspended solids (TSS), chemical oxygen demand (COD), dissolved organic carbon (DOC), metals, and targeted polyaromatic hydrocarbons (PAHs). In addition, assessment of stormwater toxicity was done using the two toxicity assays Raphidocelis subcapitata (algae) and Vibrio fischeri (bacteria). Notable single-event, single-outfall contaminant pulses included of arsenic (420 µg/L), cadmium (16.4 µg/L), zinc (924 µg/L), fluorene (4.95 µg/L), benzo[a]pyrene (0.949 µg/L), pyrene (0.934 µg/L), phenanthrene (1.39 µg/L), and anthracene (1.40 µg/L). The IC50 in both R. subcapitata and V. fischeri was observed, if at all, above expected toxicity thresholds for individual contaminant species. Conclusions In general, stormwater characteristics were similar to those of previous studies, with a bulk of contamination carried by the first volume of runoff, influenced by a combination of rainfall depth, antecedent dry period, land use, and activity within the catchment. Roads, highways, and industrial areas contribute the bulk of estimated contaminant loadings. More intensive sampling strategies are necessary to contextualize stormwater data in the context of contaminant and runoff volume peaks.


Sign in / Sign up

Export Citation Format

Share Document