Investigation of the existence and uniqueness of solutions for higher order fractional differential inclusions and equations with integral boundary conditions

Author(s):  
Adel Lachouri ◽  
Abdelouaheb Ardjouni ◽  
Ahcene Djoudi
2012 ◽  
Vol 2012 ◽  
pp. 1-24 ◽  
Author(s):  
Xiaoyou Liu ◽  
Zhenhai Liu

This paper is concerned with a class of fractional differential inclusions whose multivalued term depends on lower-order fractional derivative with fractional (non)separated boundary conditions. The cases of convex-valued and non-convex-valued right-hand sides are considered. Some existence results are obtained by using standard fixed point theorems. A possible generalization for the inclusion problem with integral boundary conditions is also discussed. Examples are given to illustrate the results.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Zihan Gao ◽  
Tianlin Hu ◽  
Huihui Pang

In this paper, we consider a class of nonlinear Caputo fractional differential equations with impulsive effect under multiple band-like integral boundary conditions. By constructing an available completely continuous operator, we establish some criteria for judging the existence and uniqueness of solutions. Finally, an example is presented to demonstrate our main results.


2016 ◽  
Vol 5 (1) ◽  
pp. 18
Author(s):  
Brahim Tellab ◽  
Kamel Haouam

<p>In this paper, we investigate the existence and uniqueness of solutions for second order nonlinear fractional differential equation with integral boundary conditions. Our result is an application of the Banach contraction principle and the Krasnoselskii fixed point theorem.</p>


Sign in / Sign up

Export Citation Format

Share Document