scholarly journals The minimal and maximal energies of all cubic circulant graphs

Author(s):  
Ilhan Hacioglu ◽  
Alper Bulut ◽  
Kerem Kaskaloglu
Keyword(s):  
2011 ◽  
Vol 5 (1) ◽  
pp. 22-36 ◽  
Author(s):  
J.W. Sander ◽  
T. Sander

The energy of a graph is the sum of the moduli of the eigenvalues of its adjacency matrix. We study the energy of integral circulant graphs, also called gcd graphs. Such a graph can be characterized by its vertex count n and a set D of divisors of n such that its vertex set is Zn and its edge set is {{a,b} : a, b ? Zn; gcd(a-b, n)? D}. For an integral circulant graph on ps vertices, where p is a prime, we derive a closed formula for its energy in terms of n and D. Moreover, we study minimal and maximal energies for fixed ps and varying divisor sets D.


2003 ◽  
Vol 271 (1-3) ◽  
pp. 169-177 ◽  
Author(s):  
Wensong Lin
Keyword(s):  

Author(s):  
Paul Manuel ◽  
Indra Rajasingh ◽  
Bharati Rajan ◽  
Joice Punitha
Keyword(s):  

2018 ◽  
Vol E101.D (12) ◽  
pp. 2916-2921
Author(s):  
Shyue-Ming TANG ◽  
Yue-Li WANG ◽  
Chien-Yi LI ◽  
Jou-Ming CHANG
Keyword(s):  

2019 ◽  
Vol 136 ◽  
pp. 154-169 ◽  
Author(s):  
Yan-Li Qin ◽  
Binzhou Xia ◽  
Sanming Zhou
Keyword(s):  

2002 ◽  
Vol 03 (03n04) ◽  
pp. 273-289 ◽  
Author(s):  
CHANG-HSIUNG TSAI ◽  
JIMMY J. M. TAN ◽  
YEN-CHU CHUANG ◽  
LIH-HSING HSU

We present some results concerning hamiltonian properties of recursive circulant graphs in the presence of faulty vertices and/or edges. The recursive circulant graph G(N, d) with d ≥ 2 has vertex set V(G) = {0, 1, …, N - 1} and the edge set E(G) = {(v, w)| ∃ i, 0 ≤ i ≤ ⌈ log d N⌉ - 1, such that v = w + di (mod N)}. When N = cdk where d ≥ 2 and 2 ≤ c ≤ d, G(cdk, d) is regular, node symmetric and can be recursively constructed. G(cdk, d) is a bipartite graph if and only if c is even and d is odd. Let F, the faulty set, be a subset of V(G(cdk, d)) ∪ E(G(cdk, d)). In this paper, we prove that G(cdk, d) - F remains hamiltonian if |F| ≤ deg (G(cdk, d)) - 2 and G(cdk, d) is not bipartite. Moreover, if |F| ≤ deg (G(cdk, d)) - 3 and G(cdk, d) is not a bipartite graph, we prove a more stronger result that for any two vertices u and v in V(G(cdk, d)) - F, there exists a hamiltonian path of G(cdk, d) - F joining u and v.


10.37236/6388 ◽  
2017 ◽  
Vol 24 (2) ◽  
Author(s):  
Hiranmoy Pal ◽  
Bikash Bhattacharjya

Let $G$ be a graph with adjacency matrix $A$. The transition matrix of $G$ relative to $A$ is defined by $H(t):=\exp{\left(-itA\right)}$, where $t\in {\mathbb R}$. The graph $G$ is said to admit pretty good state transfer between a pair of vertices $u$ and $v$ if there exists a sequence of real numbers $\{t_k\}$ and a complex number $\gamma$ of unit modulus such that $\lim\limits_{k\rightarrow\infty} H(t_k) e_u=\gamma e_v.$ We find that the cycle $C_n$ as well as its complement $\overline{C}_n$ admit pretty good state transfer if and only if $n$ is a power of two, and it occurs between every pair of antipodal vertices. In addition, we look for pretty good state transfer in more general circulant graphs. We prove that union (edge disjoint) of an integral circulant graph with a cycle, each on $2^k$ $(k\geq 3)$ vertices, admits pretty good state transfer. The complement of such union also admits pretty good state transfer. Using Cartesian products, we find some non-circulant graphs admitting pretty good state transfer.


Sign in / Sign up

Export Citation Format

Share Document