scholarly journals Pretty Good State Transfer on Circulant Graphs

10.37236/6388 ◽  
2017 ◽  
Vol 24 (2) ◽  
Author(s):  
Hiranmoy Pal ◽  
Bikash Bhattacharjya

Let $G$ be a graph with adjacency matrix $A$. The transition matrix of $G$ relative to $A$ is defined by $H(t):=\exp{\left(-itA\right)}$, where $t\in {\mathbb R}$. The graph $G$ is said to admit pretty good state transfer between a pair of vertices $u$ and $v$ if there exists a sequence of real numbers $\{t_k\}$ and a complex number $\gamma$ of unit modulus such that $\lim\limits_{k\rightarrow\infty} H(t_k) e_u=\gamma e_v.$ We find that the cycle $C_n$ as well as its complement $\overline{C}_n$ admit pretty good state transfer if and only if $n$ is a power of two, and it occurs between every pair of antipodal vertices. In addition, we look for pretty good state transfer in more general circulant graphs. We prove that union (edge disjoint) of an integral circulant graph with a cycle, each on $2^k$ $(k\geq 3)$ vertices, admits pretty good state transfer. The complement of such union also admits pretty good state transfer. Using Cartesian products, we find some non-circulant graphs admitting pretty good state transfer.

2018 ◽  
Vol 16 (1) ◽  
pp. 1483-1489
Author(s):  
Hailong Hou ◽  
Rui Gu ◽  
Mengdi Tong

AbstractLetAbe the adjacency matrix of a graphGand supposeU(t) = exp(itA). We say that we have perfect state transfer inGfrom the vertexuto the vertexvat timetif there is a scalarγof unit modulus such thatU(t)eu=γ ev. It is known that perfect state transfer is rare. So C.Godsil gave a relaxation of this definition: we say that we have pretty good state transfer fromutovif there exists a complex numberγof unit modulus and, for each positive realϵthere is a timetsuch that ‖U(t)eu–γ ev‖ <ϵ. In this paper, the quantum state transfer on 1-sum of star graphsFk,lis explored. We show that there is no perfect state transfer onFk,l, but there is pretty good state transfer onFk,lif and only ifk=l.


2011 ◽  
Vol 5 (1) ◽  
pp. 22-36 ◽  
Author(s):  
J.W. Sander ◽  
T. Sander

The energy of a graph is the sum of the moduli of the eigenvalues of its adjacency matrix. We study the energy of integral circulant graphs, also called gcd graphs. Such a graph can be characterized by its vertex count n and a set D of divisors of n such that its vertex set is Zn and its edge set is {{a,b} : a, b ? Zn; gcd(a-b, n)? D}. For an integral circulant graph on ps vertices, where p is a prime, we derive a closed formula for its energy in terms of n and D. Moreover, we study minimal and maximal energies for fixed ps and varying divisor sets D.


2007 ◽  
Vol 05 (03) ◽  
pp. 417-430 ◽  
Author(s):  
NITIN SAXENA ◽  
SIMONE SEVERINI ◽  
IGOR E. SHPARLINSKI

The intention of the paper is to move a step towards a classification of network topologies that exhibit periodic quantum dynamics. We show that the evolution of a quantum system whose hamiltonian is identical to the adjacency matrix of a circulant graph is periodic if and only if all eigenvalues of the graph are integers (that is, the graph is integral). Motivated by this observation, we focus on relevant properties of integral circulant graphs. Specifically, we bound the number of vertices of integral circulant graphs in terms of their degree, characterize bipartiteness and give exact bounds for their diameter. Additionally, we prove that circulant graphs with odd order do not allow perfect state transfer.


10.37236/1363 ◽  
1998 ◽  
Vol 5 (1) ◽  
Author(s):  
Mikhail E. Muzychuk ◽  
Gottfried Tinhofer

A circulant graph $G$ of order $n$ is a Cayley graph over the cyclic group ${\bf Z}_n.$ Equivalently, $G$ is circulant iff its vertices can be ordered such that the corresponding adjacency matrix becomes a circulant matrix. To each circulant graph we may associate a coherent configuration ${\cal A}$ and, in particular, a Schur ring ${\cal S}$ isomorphic to ${\cal A}$. ${\cal A}$ can be associated without knowing $G$ to be circulant. If $n$ is prime, then by investigating the structure of ${\cal A}$ either we are able to find an appropriate ordering of the vertices proving that $G$ is circulant or we are able to prove that a certain necessary condition for $G$ being circulant is violated. The algorithm we propose in this paper is a recognition algorithm for cyclic association schemes. It runs in time polynomial in $n$.


10.37236/9764 ◽  
2021 ◽  
Vol 28 (3) ◽  
Author(s):  
J. W. Sander

By a suitable representation in the Euclidean plane, each circulant graph $G$, i.e. a graph with a circulant adjacency matrix ${\mathcal A}(G)$, reveals its rotational symmetry and, as the drawing's most notable feature, a central hole, the so-called \emph{geometric kernel} of $G$. Every integral circulant graph $G$ on $n$ vertices, i.e. satisfying the additional property that all of the eigenvalues of ${\mathcal A}(G)$ are integral, is isomorphic to some graph $\mathrm{ICG}(n,\mathcal{D})$ having vertex set $\mathbb{Z}/n\mathbb{Z}$ and edge set $\{\{a,b\}:\, a,b\in\mathbb{Z}/n\mathbb{Z} ,\, \gcd(a-b,n)\in \mathcal{D}\}$ for a uniquely determined set $\mathcal{D}$ of positive divisors of $n$. A lot of recent research has revolved around the interrelation between graph-theoretical, algebraic and arithmetic properties of such graphs. In this article we examine arithmetic implications imposed on $n$ by a geometric feature, namely the size of the geometric kernel of $\mathrm{ICG}(n,\mathcal{D})$.


2002 ◽  
Vol 03 (03n04) ◽  
pp. 273-289 ◽  
Author(s):  
CHANG-HSIUNG TSAI ◽  
JIMMY J. M. TAN ◽  
YEN-CHU CHUANG ◽  
LIH-HSING HSU

We present some results concerning hamiltonian properties of recursive circulant graphs in the presence of faulty vertices and/or edges. The recursive circulant graph G(N, d) with d ≥ 2 has vertex set V(G) = {0, 1, …, N - 1} and the edge set E(G) = {(v, w)| ∃ i, 0 ≤ i ≤ ⌈ log d N⌉ - 1, such that v = w + di (mod N)}. When N = cdk where d ≥ 2 and 2 ≤ c ≤ d, G(cdk, d) is regular, node symmetric and can be recursively constructed. G(cdk, d) is a bipartite graph if and only if c is even and d is odd. Let F, the faulty set, be a subset of V(G(cdk, d)) ∪ E(G(cdk, d)). In this paper, we prove that G(cdk, d) - F remains hamiltonian if |F| ≤ deg (G(cdk, d)) - 2 and G(cdk, d) is not bipartite. Moreover, if |F| ≤ deg (G(cdk, d)) - 3 and G(cdk, d) is not a bipartite graph, we prove a more stronger result that for any two vertices u and v in V(G(cdk, d)) - F, there exists a hamiltonian path of G(cdk, d) - F joining u and v.


2019 ◽  
Vol 14 (2) ◽  
pp. 103-126
Author(s):  
József Borbély ◽  
András Sárközy

AbstractIn the last decades many results have been proved on pseudo-randomness of binary sequences. In this series our goal is to show that using many of these results one can also construct large families of quasi-random, pseudo-random and strongly pseudo-random graphs. Indeed, it will be proved that if the first row of the adjacency matrix of a circulant graph forms a binary sequence which possesses certain pseudorandom properties (and there are many large families of binary sequences known with these properties), then the graph is quasi-random, pseudo-random or strongly pseudo-random, respectively. In particular, here in Part I we will construct large families of quasi-random graphs along these lines. (In Parts II and III we will present and study constructions for pseudo-random and strongly pseudo-random graphs, respectively.)


Author(s):  
Arthur Benjamin ◽  
Gary Chartrand ◽  
Ping Zhang

This chapter considers Hamiltonian graphs, a class of graphs named for nineteenth-century physicist and mathematician Sir William Rowan Hamilton. In 1835 Hamilton discovered that complex numbers could be represented as ordered pairs of real numbers. That is, a complex number a + b i (where a and b are real numbers) could be treated as the ordered pair (a, b). Here the number i has the property that i² = -1. Consequently, while the equation x² = -1 has no real number solutions, this equation has two solutions that are complex numbers, namely i and -i. The chapter first examines Hamilton's icosian calculus and Icosian Game, which has a version called Traveller's Dodecahedron or Voyage Round the World, before concluding with an analysis of the Knight's Tour Puzzle, the conditions that make a given graph Hamiltonian, and the Traveling Salesman Problem.


2020 ◽  
Vol 12 (04) ◽  
pp. 2050055
Author(s):  
Yen-Jen Cheng ◽  
Hung-Lin Fu ◽  
Chia-An Liu

Let [Formula: see text] be a simple undirected graph. [Formula: see text] is a circulant graph defined on [Formula: see text] with difference set [Formula: see text] provided two vertices [Formula: see text] and [Formula: see text] in [Formula: see text] are adjacent if and only if [Formula: see text]. For convenience, we use [Formula: see text] to denote such a circulant graph. A function [Formula: see text] is an integer [Formula: see text]-domination function if for each [Formula: see text], [Formula: see text] By considering all [Formula: see text]-domination functions [Formula: see text], the minimum value of [Formula: see text] is the [Formula: see text]-domination number of [Formula: see text], denoted by [Formula: see text]. In this paper, we prove that if [Formula: see text], [Formula: see text], then the integer [Formula: see text]-domination number of [Formula: see text] is [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document