The lifting scheme of 4-channel orthogonal wavelet transforms*

2006 ◽  
Vol 16 (1) ◽  
pp. 100-104 ◽  
Author(s):  
Peng Lizhong ◽  
Chu Xiaoyong
Author(s):  
MAARTEN JANSEN

This paper constructs a class of semi-orthogonal and bi-orthogonal wavelet transforms on possibly irregular point sets with the property that the scaling coefficients are independent from the order of refinement. That means that scaling coefficients at a given scale can be constructed with the configuration at that scale only. This property is of particular interest when the refinement operation is data dependent, leading to adaptive multiresolution analyses. Moreover, the proposed class of wavelet transforms are constructed using a sequence of just two lifting steps, one of which contains a linear interpolating prediction operator. This operator easily allows extensions towards directional offsets from predictions, leading to an edge-adaptive nonlinear multiscale decomposition.


Author(s):  
Da Jun Chen ◽  
Wei Ji Wang

Abstract As a multi-resolution signal decomposition and analysis technique, the wavelet transforms have been already introduced to vibration signal processing. In this paper, a comparison on the time-scale map analysis is made between the discrete and the continuous wavelet transform. The orthogonal wavelet transform decomposes the vibration signal onto a series of orthogonal wavelet functions and the number of wavelets on one wavelet level is different from those on the other levels. Since the grids are unevenly distributed on the time-scale map, it is shown that a representation pattern of a vibration component on the map may be significantly altered or even be broken down into pieces when the signal has a shift along the time axis. On contrary, there is no such uneven distribution of grids on the continuous wavelet time-scale map, so that the representation pattern of a vibration signal component will not change its shape when the signal component shifts along the time axis. Therefore, the patterns in the continuous wavelet time-scale map are more easily recognised by human visual inspection or computerised automatic diagnosis systems. Using a Gaussian enveloped oscillation wavelet, the wavelet transform is capable of retaining the frequency meaning used in the spectral analysis, while making the interpretation of patterns on the time-scale maps easier.


2002 ◽  
pp. 86-104 ◽  
Author(s):  
Raghuveer Rao

One of the most fascinating developments in the field of multirate signal processing has been the establishment of its link to the discrete wavelet transform. Indeed, it is precisely this link that has been responsible for the rapid application of wavelets in fields such as image compression. The objective of this chapter is to provide an overview of the wavelet transform and develop its link to multirate filtering. The birth of the field of wavelet transforms is now attributed to the seminal paper by Grossman and Morlet (1984) detailing the continuous wavelet transform or CWT. The CWT of a square integrable function is obtained by integrating it over regions defined by translations and dilations of a windowing function called the mother wavelet. The idea of representing functions or signals in terms of dilations can be found even in engineering articles dating back by several years, for example, Helstrom (1966). However, Grossman and Morlet’s formulation was more complete and was motivated by potential application to modeling seismic data. The next step of significance was the discovery of orthogonal wavelet basis functions and their role in defining multi-resolution representations (Daubechies 1988; Meyer 1992). Daubechies also provided a method for constructing compactly supported wavelets. Mallat (1989) established the fact that coefficients of orthogonal wavelet expansions can be obtained through multirate filtering which paved the way for widespread investigation of using wavelet transforms in signal and image processing applications. The objective of the chapter is to provide an overview of the relationship between multirate filtering and wavelet transformation. We begin with a brief account of the CWT, then go through the discrete wavelet transformation (DWT) followed by derivation of the relationship between the DWT and multirate filtering. The chapter concludes with an account of selected applications in digital image processing.


Author(s):  
YINWEI ZHAN ◽  
HENK J. A. M. HEIJMANS

In the literature 2D (or bivariate) wavelets are usually constructed as a tensor product of 1D wavelets. Such wavelets are called separable. However, there are various applications, e.g. in image processing, for which non-separable 2D wavelets are prefered. In this paper, we investigate the class of compactly supported orthonormal 2D wavelets that was introduced by Belogay and Wang.2 A characteristic feature of this class of wavelets is that the support of the corresponding filter comprises only two rows. We are concerned with the biorthogonal extension of this kind of wavelets. It turns out that the 2D wavelets in this class are intimately related to some underlying 1D wavelet. We explore this relation in detail, and we explain how the 2D wavelet transforms can be realized by means of a lifting scheme, thus allowing an efficient implementation. We also describe an easy way to construct wavelets with more rows and shorter columns.


Sign in / Sign up

Export Citation Format

Share Document