lifting scheme
Recently Published Documents


TOTAL DOCUMENTS

420
(FIVE YEARS 47)

H-INDEX

22
(FIVE YEARS 2)

Author(s):  
Yassine Habchi ◽  
Ameur Fethi Aimer ◽  
Mohammed Beladgham ◽  
Riyadh Bouddou

Recently, ophthalmic clinics have seen many complaints related to retinal diseases. The degree of clarity of the blood vessels (BV) in the eye can be an important indicator of some diseases affecting the retina such as diabetic retinopathy. To diagnose it, we need to intervene more than a medical team, especially in some difficult cases, through the exchange of medical images obtained by photography. This method has contributed significantly to the production of large data that can quickly saturate transmission, storage systems and increase processing time, so the need to compress images efficiently without modifying the content before transmission represents a major challenge. This paper provides an effective method for compressing color retinal images (CRI), which relies on the use of an integer lifting scheme (ILS) based on cohen daubechies-feaveau wavelet (CDFW9/7) and the set partitioning in hierarchical trees (SPIHT) to encode large coefficients. The obtained results demonstrate that the suggested method reduce algorithmic complexity, improve the retinal image quality and achieves high objective parameters values for ultra-low bitrate compared to the conventional methods.


2021 ◽  
Vol 13 (9) ◽  
pp. 1862
Author(s):  
Ling Tian ◽  
Yu Cao ◽  
Zishan Shi ◽  
Bokun He ◽  
Chu He ◽  
...  

The design of backbones is of great significance for enhancing the location and classification precision in the remote sensing target detection task. Recently, various approaches have been proposed on altering the feature extraction density in the backbones to enlarge the receptive field, make features prominent, and reduce computational complexity, such as dilated convolution and deformable convolution. Among them, one of the most widely used methods is strided convolution, but it loses the information about adjacent feature points which leads to the omission of some useful features and the decrease of detection precision. This paper proposes a novel sparse density feature extraction method based on the relationship between the lifting scheme and convolution, which improves the detection precision while keeping the computational complexity almost the same as the strided convolution. Experimental results on remote sensing target detection indicate that our proposed method improves both detection performance and network efficiency.


2021 ◽  
Vol 114 ◽  
pp. 103621
Author(s):  
Liyang Dai ◽  
Gang Liu ◽  
Lei Huang ◽  
Gang Xiao ◽  
Zhao Xu ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 496
Author(s):  
Peilu Li ◽  
Chunguang Xu ◽  
Qinxue Pan ◽  
Yuren Lu ◽  
Shuangyi Li

According to the acousto elastic effect, the residual stress on the surface of the rail can be evaluated by measuring the change in the propagation velocity of ultrasonic waves, such as longitudinal critically refracted (LCR) waves on the surface of the rail. The LCR wave signal is often polluted by a variety of noise sources, coupled with the influence of the poor surface condition of the inspected component, which greatly reduces the detectability and online measurement ability of the LCR wave signal. This paper proposes the application of the lifting scheme wavelet packet transform (LSWPT) denoising method to solve the noise suppression problem of LCR wave signal. The traditional wavelet transform (WT), wavelet packet transform (WPT), as well as the lifting scheme wavelet transform (LSWT) and lifting scheme wavelet packet transform are compared and analyzed in the soft thresholding and hard thresholding processing of denoising ability and efficiency of the noisy LCR wave signal. The experimental results show that the LSWPT method has the characteristics of fast calculation speed and a good denoising effect, and it is an efficient method of denoising signals for on-line ultrasonic measurement of residual stress on the rail surface.


Author(s):  
S. C. Shiralashetti ◽  
M. H. Kantli ◽  
A. B. Deshi

Recently, wavelet theory has become a well recognized promising tool in science and engineering field; especially, wavelets are successfully used in fast algorithms for easy execution. In this paper, we developed wavelet lifting scheme using orthogonal and biorthogonal wavelets for the numerical solution of dynamic Reynolds equation for micropolar fluid lubrication. The numerical results gained through proposed scheme are compared with the exact solution to expose the accuracy with speed of convergence in lesser computational time as compared with the existing methods. The examples are given to demonstrate the applicability and attractiveness of proposed method.


Author(s):  
Amandeep Singh Bhatia ◽  
Soumya Ranjan Nayak ◽  
T. Ganesan ◽  
Pothuraju Rajarajeswari

Sign in / Sign up

Export Citation Format

Share Document