Energy consumption, air quality, and air pollution spatial spillover effects: evidence from the Yangtze River Delta of China

2019 ◽  
Vol 17 (4) ◽  
pp. 329-340 ◽  
Author(s):  
Lingyun He ◽  
Lu Zhang ◽  
Rongyan Liu
2010 ◽  
Vol 10 (10) ◽  
pp. 23657-23703
Author(s):  
L. Li ◽  
C. H. Chen ◽  
C. Huang ◽  
Y. J. Wang ◽  
H. Y. Huang ◽  
...  

Abstract. Regional trans-boundary air pollution has become an important issue in the field of air pollution modeling. This paper presents the results of the implementation of the MM5-CMAQ modeling system in the Yangtze River Delta (YRD) for the months of January and July of 2004. The meteorological parameters are obtained by using the MM5 model. A new regional emission inventory with spatial and temporal allocations based on local statistical data has been developed to provide input emissions data to the MM5-CMAQ modeling system. The pollutant concentrations obtained from the MM5-CMAQ modeling system have been compared with observational data from the national air pollution monitoring network. It is found that air quality in winter in the YRD is generally worse than in summer, due mainly to unfavorable meteorological dispersion conditions. In winter the pollution transport from Northern China to the YRD reinforces the pollution caused by large local emissions. The monthly average concentration of SO2 in the YRD is 0.026 ± 0.011 mg m−3 in January and 0.017 ± 0.009 mg m−3 in July. Monthly average concentrations of NO2 in the YRD in January and July are 0.021 ± 0.009 mg m−3, and 0.014 ± 0.008 mg m−3 respectively. Visibility is also a problem, with average deciview values of 26.4 ± 2.95 dcv in winter and 17.6 ± 3.3 dcv in summer. The ozone concentration in the downtown area of a city like Zhoushan can be very high, with the highest simulated value reaching 107 ppb. Our results show that ozone and haze have become extremely important issues in the regional air quality. Thus, regional air pollution control is urgently needed to improve air quality in the YRD.


2011 ◽  
Vol 11 (4) ◽  
pp. 1621-1639 ◽  
Author(s):  
L. Li ◽  
C. H. Chen ◽  
J. S. Fu ◽  
C. Huang ◽  
D. G. Streets ◽  
...  

Abstract. Regional trans-boundary air pollution has become an important issue in the field of air pollution modeling. This paper presents the results of the implementation of the MM5-CMAQ modeling system in the Yangtze River Delta (YRD) for the months of January and July of 2004. The meteorological parameters are obtained by using the MM5 model. A new regional emission inventory with spatial and temporal allocations based on local statistical data has been developed to provide input emissions data to the MM5-CMAQ modeling system. The pollutant concentrations obtained from the MM5-CMAQ modeling system have been compared with observational data from the national air pollution monitoring network. It is found that air quality in winter in the YRD is generally worse than in summer, due mainly to unfavorable meteorological dispersion conditions. In winter, the pollution transport from Northern China to the YRD reinforces the pollution caused by large local emissions. The monthly average concentration of SO2 in the YRD is 0.026 ± 0.011 mg m−3 in January and 0.017 ± 0.009 mg m−3 in July. Monthly average concentrations of NO2 in the YRD in January and July are 0.021 ± 0.009 mg m−3, and 0.014 ± 0.008 mg m−3, respectively. The monthly average concentration of PM10 in the YRD is 0.080 ± 0.028 mg m−3 in January and 0.025 ± 0.015 mg m−3 in July. Visibility is also a problem, with average deciview values of 26.4 ± 2.95 dcv in winter and 17.6 ± 3.3 dcv in summer. The ozone concentration in the downtown area of a city like Zhoushan can be very high, with the highest simulated value reaching 0.24 mg m−3. In January, the monthly average concentration of O3 in the YRD is 0.052 ± 0.011 mg m−3, and 0.054 ± 0.008 mg m−3 in July. Our results show that ozone and haze have become extremely important issues in the regional air quality. Thus, regional air pollution control is urgently needed to improve air quality in the YRD.


2019 ◽  
Author(s):  
Ka Lok Chan ◽  
Zhuoru Wang ◽  
Aijun Ding ◽  
Klaus-Peter Heue ◽  
Yicheng Shen ◽  
...  

Abstract. In this paper, we present long term observations of atmospheric nitrogen dioxide (NO2) and formaldehyde (HCHO) in Nanjing using a Multi-AXis Differential Optical Absorption Spectroscopy (MAX-DOAS) instrument. Ground based MAX-DOAS measurements were performed from April 2013 to February 2017. The MAX-DOAS measurements of NO2 and HCHO vertical column densities (VCDs) are used to validate OMI satellite observations over Nanjing. The comparison shows that the OMI observations of NO2 correlate well with the MAX-DOAS data with Pearson correlation coefficient (R) of 0.91. However, OMI observations are on average a factor of 3 lower than the MAX-DOAS measurements. Replacing the a priori NO2 profiles by the MAX-DOAS profiles in the OMI NO2 VCD retrieval would increase the OMI NO2 VCDs by ~ 30 % with correlation nearly unchanged. The comparison result of MAX-DOAS and OMI observations of HCHO VCD shows a good agreement with R of 0.75 and the slope of the regression line is 0.99. We developed a new technique to assemble the source contribution map using backward trajectory analysis. The age weighted backward propagation approach is applied to the MAX-DOAS measurements of NO2 and HCHO to reconstruct the spatial distribution of NO2 and HCHO over the Yangtze River Delta during summer and winter time. The reconstructed NO2 fields show a distinct agreement with OMI satellite observations. However, due to the short atmospheric lifetime of HCHO, the backward propagated HCHO data does not show a strong spatial correlation with the OMI HCHO observations. The result shows the MAX-DOAS measurements are sensitive to the air pollution transportation in the Yangtze River Delta, indicating the air quality in Nanjing is significantly influenced by regional transportation of air pollutants. The MAX-DOAS data are also used to evaluate the effectiveness of air pollution control measures implemented during the Youth Olympic Games 2014. The MAX-DOAS data show a significant reduction of ambient aerosol, NO2 and HCHO (30 %–50 %) during the Youth Olympic Games. Our results provide a better understanding of the transportation and sources of pollutants in over the Yangtze River Delta as well as the effect of emission control measures during large international event, which are important for the future design of air pollution control policies.


Sign in / Sign up

Export Citation Format

Share Document