scholarly journals Jet Impingement Heat Transfer on Pinned Surfaces Using a Transient Liquid Crystal Technique

2002 ◽  
Vol 8 (3) ◽  
pp. 161-173 ◽  
Author(s):  
GM AZAD ◽  
YIZHE HUANG ◽  
JE-CHIN HAN
Author(s):  
Ryan Hebert ◽  
Srinath V. Ekkad ◽  
Vivek Khanna ◽  
Mario Abreu ◽  
Hee-Koo Moon

Impingement heat transfer is significantly affected by initial cross-flow or by the presence of cross-flow from upstream spent jets. In this study, a zero cross-flow design is presented. The zero-crossflow design creates spacing between hole arrays to allow for spent flow to be directed away from impinging jets. Three configurations with different impingement holes placements are studied and compared with pure impingement with spent crossflow cases for the same jet Reynolds number. Three jet Reynolds numbers are studied for Rej = 10000, 20000, and 30000. Detailed heat transfer distributions are obtained using the transient liquid crystal technique. The zero-cross flow design clearly shows minimal degradation of impingement heat transfer due to crossflow compared to conventional design with lower mass flow rate requirement and lesser number of overall impingement holes due to the reduced cross-flow effect on the impingement region.


2014 ◽  
Vol 136 (7) ◽  
Author(s):  
Alexandros Terzis ◽  
Guillaume Wagner ◽  
Jens von Wolfersdorf ◽  
Peter Ott ◽  
Bernhard Weigand

This study examines experimentally the cooling performance of narrow impingement channels as could be cast-in in modern turbine airfoils. Full surface heat transfer coefficients are evaluated for the target plate and the sidewalls of the channels using the transient liquid crystal technique. Several narrow impingement channel geometries, consisting of a single row of five cooling holes, have been investigated composing a test matrix of nine different models. The experimental data are analyzed by means of various post-processing procedures aiming to clarify and quantify the effect of cooling hole offset position from the channel centerline on the local and average heat transfer coefficients and over a range of Reynolds numbers (11,100–86,000). The results indicated a noticeable effect of the jet pattern on the distribution of convection coefficients as well as similarities with conventional multi-jet impingement cooling systems.


Author(s):  
Chen Tang ◽  
Sumanta Acharya

Abstract Jet-impingement heat transfer is commonly used for vane leading edges and end-walls of turbine components for cooling the surfaces. One of the factors that limit high heat transfer rates is the effect of the crossflow which builds up downstream and adversely impacts the jet penetration and the impingement heat transfer rates. The present paper investigates the concept of introducing return holes (RH) for the crossflow to prevent its build-up and therefore reduce its deleterious effects. In the present experimental study, a 3 by 9 jet-array impinging on a target surface is considered with and without return holes. The return holes are located in an in-line pattern between the impingement holes. Experiments are conducted in an impingement channel with closed side walls and for jet-to-target distances (H/D) of 1D to 9D and a jet-Reynolds number of 20,000. Two different crossflow schemes combined with three return hole (RH) configurations are studied. The two crossflow arrangements are: (1) one radial exit and RH’s open for the spent air to exit and (2) all radial exits blocked with the spent air exiting through the RH’s only. Three different area-openings for the RH’s are considered and correspond to 33.3%, 66.7%, and 100% of the total return hole area open. In addition, a baseline case with no RH’s and one radial exit is studied. A transient liquid-crystal based study is conducted using a thin sheet of narrowband Thermochromic Liquid Crystal glued on an acrylic plate serving as the target surface. Local heat transfer coefficients are obtained based on the measured surface temperature and the solution of 1D transient heat conduction in the target acrylic plate. Return holes have significant influence on the crossflow-induced degradation effects at small jet-to-target spacing. The all-blocked crossflow scheme demonstrates good uniformity and axisymmetric Nusselt number distributions.


Author(s):  
Srinath V. Ekkad ◽  
Lujia Gao ◽  
Ryan T. Hebert

Detailed heat transfer measurements are presented for jet impingement through arrays of jet holes. The effect of jet-to-wall spacing, hole-to-hole spacing are studied for inline arrays of holes. The axial and spanwise spacing (S/D) of holes are varied to produce square and rectangular arrays of holes. The results are presented at a jet average Reynolds numbers of 5000, 10000, and 15000. The jet-to-wall spacing is varied from 1 to 5. The arrays of 25 holes are placed to create four different configurations. The first configuration has an axial jet-to-jet spacing (SX/D) of 4 and a jet-to-jet spanwise spacing (SY/D) of 4, the second configuration has a SX/D of 8 and SY/D of 4, and the last configuration has a SX/D and SY/D of 8. Detailed heat transfer measurements are obtained using the transient liquid crystal technique. Results show that increase in jet-to-wall spacing reduces cross-flow effect. Results also show that the increase spacing between jets increases lateral spreading.


2006 ◽  
Vol 128 (8) ◽  
pp. 738-738 ◽  
Author(s):  
Eric Esposito ◽  
Srinath V. Ekkad

Experimental Procedure: •Blower is set appropriately for required jet Reynolds number •Heater is turned on and allowed to reach steady state •A picture is taken of the liquid crystal coated test plate and heater amperage and voltage measured •Heater power is incrementally increased and additional pictures taken to capture temperature and heater flux data at every point in the array •Pictures are converted to Hue and liquid crystal calibration curve used to determine temperature at corresponding point


Sign in / Sign up

Export Citation Format

Share Document