scholarly journals Numerical method of identification of an unknown source term in a heat equation

2002 ◽  
Vol 8 (2) ◽  
pp. 161-168 ◽  
Author(s):  
Afet Golayoğlu Fatullayev

A numerical procedure for an inverse problem of identification of an unknown source in a heat equation is presented. Approach of proposed method is to approximate unknown function by polygons linear pieces which are determined consecutively from the solution of minimization problem based on the overspecified data. Numerical examples are presented.

2013 ◽  
Vol 2013 ◽  
pp. 1-9
Author(s):  
Baiyu Wang ◽  
Anping Liao

This paper considers a numerical method based on the radial basis functions for the inverse problem of heat equation; the inverse problem is determining an unknown source term subject to the overdetermination along with the usual initial boundary conditions, and the unknown source term is only time-dependent. The radial basis functions method is a meshless method with high accuracy for the inverse problem. Some numerical experiments using this method are presented and discussed.


2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Xiuming Li ◽  
Suping Qian

This paper investigates the inverse problem of determining a heat source in the parabolic heat equation using the usual conditions. Firstly, the problem is reduced to an equivalent problem which is easy to handle using variational iteration method. Secondly, variational iteration method is used to solve the reduced problem. Using this method a rapid convergent sequence can be produced which tends to the exact solution of the problem. Furthermore, variational iteration method does not require the discretization of the problem. Two numerical examples are presented to illustrate the strength of the method.


Axioms ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 89 ◽  
Author(s):  
Manuel Echeverry ◽  
Carlos Mejía

We consider a two-dimensional time fractional diffusion equation and address the important inverse problem consisting of the identification of an ingredient in the source term. The fractional derivative is in the sense of Caputo. The necessary regularization procedure is provided by a two-dimensional discrete mollification operator. Convergence results and illustrative numerical examples are included.


Open Physics ◽  
2013 ◽  
Vol 11 (10) ◽  
Author(s):  
Fanhai Zeng ◽  
Changpin Li

AbstractIf a function can be explicitly expressed, then one can easily compute its Caputo derivative by the known methods. If a function cannot be explicitly expressed but it satisfies a differential equation, how to seek Caputo derivative of such a function has not yet been investigated. In this paper, we propose a numerical algorithm for computing the Caputo derivative of a function defined by a classical (integer-order) differential equation. By the properties of Caputo derivative derived in this paper, we can change the original typical differential system into an equivalent Caputo-type differential system. Numerical examples are given to support the derived numerical method.


Sign in / Sign up

Export Citation Format

Share Document