scholarly journals A computational framework to simulate the endolymph flow due to vestibular rehabilitation maneuvers assessed from accelerometer data

2018 ◽  
Vol 21 (6) ◽  
pp. 461-469 ◽  
Author(s):  
Carla F. Santos ◽  
Jorge Belinha ◽  
Fernanda Gentil ◽  
Marco Parente ◽  
Bruno Areias ◽  
...  
2019 ◽  
Vol 4 (6) ◽  
pp. 1399-1405 ◽  
Author(s):  
Jennifer Christy

Purpose The purpose of this article was to provide a perspective on vestibular rehabilitation for children. Conclusion The developing child with vestibular dysfunction may present with a progressive gross motor delay, sensory disorganization for postural control, gaze instability, and poor perception of motion and verticality. It is important that vestibular-related impairments be identified early in infancy or childhood so that evidence-based interventions can be initiated. A focused and custom vestibular rehabilitation program can improve vestibular-related impairments, enabling participation. Depending on the child's age, diagnosis, severity, and quality of impairments, vestibular rehabilitation programs may consist of gaze stabilization exercises, static and dynamic balance exercises, gross motor practice, and/or habituation exercises. Exercises must be modified for children, done daily at home, and incorporated into the daily life situation.


2020 ◽  
Author(s):  
Anis Davoudi ◽  
Mamoun T. Mardini ◽  
Dave Nelson ◽  
Fahd Albinali ◽  
Sanjay Ranka ◽  
...  

BACKGROUND Research shows the feasibility of human activity recognition using Wearable accelerometer devices. Different studies have used varying number and placement for data collection using the sensors. OBJECTIVE To compare accuracy performance between multiple and variable placement of accelerometer devices in categorizing the type of physical activity and corresponding energy expenditure in older adults. METHODS Participants (n=93, 72.2±7.1 yrs) completed a total of 32 activities of daily life in a laboratory setting. Activities were classified as sedentary vs. non-sedentary, locomotion vs. non-locomotion, and lifestyle vs. non-lifestyle activities (e.g. leisure walk vs. computer work). A portable metabolic unit was worn during each activity to measure metabolic equivalents (METs). Accelerometers were placed on five different body positions: wrist, hip, ankle, upper arm, and thigh. Accelerometer data from each body position and combinations of positions were used in developing Random Forest models to assess activity category recognition accuracy and MET estimation. RESULTS Model performance for both MET estimation and activity category recognition strengthened with additional accelerometer devices. However, a single accelerometer on the ankle, upper arm, hip, thigh, or wrist had only a 0.03 to 0.09 MET increase in prediction error as compared to wearing all five devices. Balanced accuracy showed similar trends with slight decreases in balanced accuracy for detection of locomotion (0-0.01 METs), sedentary (0.13-0.05 METs) and lifestyle activities (0.08-0.04 METs) compared to all five placements. The accuracy of recognizing activity categories increased with additional placements (0.15-0.29). Notably, the hip was the best single body position for MET estimation and activity category recognition. CONCLUSIONS Additional accelerometer devices only slightly enhance activity recognition accuracy and MET estimation in older adults. However, given the extra burden of wearing additional devices, single accelerometers with appropriate placement appear to be sufficient for estimating energy expenditure and activity category recognition in older adults.


2007 ◽  
Vol 117 (8) ◽  
pp. 1482-1487 ◽  
Author(s):  
Alessandra R. Venosa ◽  
Roseli S. Bittar

Sign in / Sign up

Export Citation Format

Share Document