The Effect of Sensor Placement and Number on Physical Activity Recognition and Energy Expenditure Estimation (Preprint)

2020 ◽  
Author(s):  
Anis Davoudi ◽  
Mamoun T. Mardini ◽  
Dave Nelson ◽  
Fahd Albinali ◽  
Sanjay Ranka ◽  
...  

BACKGROUND Research shows the feasibility of human activity recognition using Wearable accelerometer devices. Different studies have used varying number and placement for data collection using the sensors. OBJECTIVE To compare accuracy performance between multiple and variable placement of accelerometer devices in categorizing the type of physical activity and corresponding energy expenditure in older adults. METHODS Participants (n=93, 72.2±7.1 yrs) completed a total of 32 activities of daily life in a laboratory setting. Activities were classified as sedentary vs. non-sedentary, locomotion vs. non-locomotion, and lifestyle vs. non-lifestyle activities (e.g. leisure walk vs. computer work). A portable metabolic unit was worn during each activity to measure metabolic equivalents (METs). Accelerometers were placed on five different body positions: wrist, hip, ankle, upper arm, and thigh. Accelerometer data from each body position and combinations of positions were used in developing Random Forest models to assess activity category recognition accuracy and MET estimation. RESULTS Model performance for both MET estimation and activity category recognition strengthened with additional accelerometer devices. However, a single accelerometer on the ankle, upper arm, hip, thigh, or wrist had only a 0.03 to 0.09 MET increase in prediction error as compared to wearing all five devices. Balanced accuracy showed similar trends with slight decreases in balanced accuracy for detection of locomotion (0-0.01 METs), sedentary (0.13-0.05 METs) and lifestyle activities (0.08-0.04 METs) compared to all five placements. The accuracy of recognizing activity categories increased with additional placements (0.15-0.29). Notably, the hip was the best single body position for MET estimation and activity category recognition. CONCLUSIONS Additional accelerometer devices only slightly enhance activity recognition accuracy and MET estimation in older adults. However, given the extra burden of wearing additional devices, single accelerometers with appropriate placement appear to be sufficient for estimating energy expenditure and activity category recognition in older adults.

2020 ◽  
Author(s):  
Peter Hartley ◽  
Amanda L Dewitt ◽  
Faye Forsyth ◽  
Roman Romero-Ortuno ◽  
Christi Deaton

Abstract Background: Reduced mobility may be responsible for functional decline and acute sarcopenia in older hospitalised patients. The drivers of reduced in-hospital mobility are poorly understood, especially during the early phase of acute hospitalisation. We investigated predictors of in-hospital activity during a 24-hour period in the first 48 hours of hospital admission in older adults. Methods: This was a secondary analysis of a prospective repeated measures cohort study. Participants aged 75 years or older were recruited within the first 24 hours of admission. At recruitment, patients underwent a baseline assessment including measurements of pre-morbid functional mobility, cognition, frailty, falls efficacy, co-morbidity, acute illness severity, knee extension strength and grip strength, and consented to wear accelerometers to measure physical activity during the first 7 days (or until discharge if earlier). In-hospital physical activity was defined as the amount of upright time (standing or walking). To examine the predictors of physical activity, we limited the analysis to the first 24 hours of recording to maximise the sample size as due to discharge from hospital there was daily attrition. We used a best subset analysis including all baseline measures. The optimal model was defined by having the lowest Bayesian information criterion in the best-subset analyses. The model specified a maximum of 5 covariates and used an exhaustive search.Results: Seventy participants were recruited but eight were excluded from the final analysis due to lack of accelerometer data within the first 24 hours after recruitment. Patients spent a median of 0.50 hours (IQR: 0.21; 1.43) standing or walking. The optimal model selected the following covariates: functional mobility as measured by the de Morton Mobility Index and two measures of illness severity, the National Early Warning Score, and serum C-reactive protein.Conclusions: Physical activity, particularly in the acute phase of hospitalisation, is very low in older adults. The association between illness severity and physical activity may be explained by symptoms of acute illness being barriers to activity. Interdisciplinary approaches are required to identify early mobilisation opportunities.


2004 ◽  
Vol 92 (6) ◽  
pp. 1001-1008 ◽  
Author(s):  
Bo-Egil Hustvedt ◽  
Alf Christophersen ◽  
Lene R. Johnsen ◽  
Heidi Tomten ◽  
Geraldine McNeill ◽  
...  

The ActiReg® (PreMed AS, Oslo, Norway) system is unique in using combined recordings of body position and motion alone or combined with heart rate (HR) to calculate energy expenditure (EE) and express physical activity (PA). The ActiReg® has two pairs of position and motion sensors connected by cables to a battery-operated storage unit fixed to a waist belt. Each pair of sensors was attached by medical tape to the chest and to the front of the right thigh respectively. The collected data were transferred to a personal computer and processed by a dedicated program ActiCalc®. Calculation models for EE with and without HR are presented. The models were based on literature values for the energy costs of different activities and therefore require no calibration experiments. The ActiReg® system was validated against doubly labelled water (DLW) and indirect calorimetry. The DLW validation demonstrated that neither EE calculated from ActiReg® data alone (EEAR) nor from combined ActiReg® and HR data (EEAR–HR) were statistically different from DLW results. The EEAR procedure causes some underestimation of EE >11 MJ corresponding to a PA level >2·0. This underestimation is reduced by the EEAR–HR procedure. The objective recording of the time spent in different body positions and at different levels of PA may be useful in studies of PA in different groups and in studies of whether recommendations for PA are being met. The comparative ease of data collection and calculation should make ActiReg® a useful instrument to measure habitual PA level and EE.


2020 ◽  
Vol 17 (1) ◽  
pp. 2-12 ◽  
Author(s):  
Miguel A. de la Cámara ◽  
Sara Higueras-Fresnillo ◽  
Verónica Cabanas-Sánchez ◽  
Kabir P. Sadarangani ◽  
David Martinez-Gomez ◽  
...  

Background: To assess the validity of the single question to determine sedentary behavior (SB) by using the Global Physical Activity Questionnaire (GPAQ) in older adults. Methods: The sample included 163 participants (96 women) aged 65–92 years. Self-reported SB was obtained from the GPAQ. Objectively measured SB was assessed using the Intelligent Device for Energy Expenditure and Activity. Participants wore the Intelligent Device for Energy Expenditure and Activity continuously during 2 consecutive days while following their daily routine. The relative validity was assessed using the Spearman rank correlation coefficient (ρ), and the agreement was examined using mean bias and 95% limit of agreement with the Intelligent Device for Energy Expenditure and Activity as reference. Results: The results showed small correlations (ρ = .291, P < .001) between the SB from the GPAQ and the objective measures, and ranged from ρ = .217 to ρ = .491 depending on the potential moderator. Similarly, the GPAQ underestimates the SB for approximately 2 hours per day in older adults (limit of agreement = −7.3 to 3.4 h/d). Conclusion: The GPAQ may not be the most suitable questionnaire for measuring SB in this population and should be used with caution because those studies that use this questionnaire in older adults may have an inaccurate measurement of SB levels.


2014 ◽  
Vol 22 (2) ◽  
pp. 276-283 ◽  
Author(s):  
Leslie Peacock ◽  
Allan Hewitt ◽  
David A. Rowe ◽  
Rona Sutherland

Purpose:The study investigated (a) walking intensity (stride rate and energy expenditure) under three speed instructions; (b) associations between stride rate, age, height, and walking intensity; and (c) synchronization between stride rate and music tempo during overground walking in a population of healthy older adults.Methods:Twenty-nine participants completed 3 treadmill-walking trials and 3 overground-walking trials at 3 self-selected speeds. Treadmill VO2 was measured using indirect calorimetry. Stride rate and music tempo were recorded during overground-walking trials.Results:Mean stride rate exceeded minimum thresholds for moderate to vigorous physical activity (MVPA) under slow (111.41 ± 11.93), medium (118.17 ± 11.43), and fast (123.79 ± 11.61) instructions. A multilevel model showed that stride rate, age, and height have a significant effect (p < .01) on walking intensity.Conclusions:Healthy older adults achieve MVPA with stride rates that fall below published minima for MVPA. Stride rate, age, and height are significant predictors of energy expenditure in this population. Music can be a useful way to guide walking cadence.


2020 ◽  
Author(s):  
Melker Staffan Johansson ◽  
Karen Søgaard ◽  
Eva Prescott ◽  
Jacob Louis Marott ◽  
Peter Schnohr ◽  
...  

Abstract Background: It is unclear whether walking can decrease cardiovascular disease (CVD) risk or if high intensity physical activity (HIPA) is needed, and whether the association is modified by age. We investigated how sedentary behaviour, walking, and HIPA, were associated with systolic blood pressure (SBP), waist circumference (WC), and low-density lipoprotein cholesterol (LDL-C) among adults and older adults in a general population sample using compositional data analysis. Specifically, the measure of association was quantified by reallocating time between sedentary behaviour and 1) walking, and 2) HIPA. Methods: Cross-sectional data from the fifth examination of the Copenhagen City Heart Study was used. Using the software Acti4, we estimated daily time spent in physical behaviours from accelerometer data worn 24 h/day for 7 days (i.e., right frontal thigh and iliac crest; median wear time: 6 days, 23.8 h/day). SBP, WC, and LDL-C were measured during a physical examination. Inclusion criteria were ≥5 days with ≥16 h of accelerometer recordings per day, and no use of antihypertensives, diuretics or cholesterol lowering medicine. The 24-hour physical behaviour composition consisted of sedentary behaviour, standing, moving, walking, HIPA (i.e., sum of climbing stairs, running, cycling and rowing), and time in bed. We used fitted values from linear regression models to predict the difference in outcome given the investigated time reallocations relative to the group-specific mean composition. Results: Among 1053 eligible participants, we found an interaction between the physical behaviour composition and age. Age-stratified analyses (i.e., </≥65 years; 773 adults, 280 older adults) indicated that less sedentary behaviour and more walking was associated with lower SBP among older adults only. For less sedentary behaviour and more HIPA, the results i) indicated an association with lower SBP irrespective of age, ii) showed an association with a smaller WC among adults, and iii) showed an association with a lower LDL-C in both age groups. Conclusions: Less sedentary behaviour and more walking seems to be associated with lower CVD risk among older adults, while HIPA types are associated with lower risk among adults. Therefore, to reduce CVD risk, the modifying effect of age should be considered in future physical activity-promoting initiatives.


2021 ◽  
Vol 13 ◽  
Author(s):  
Ali Arab ◽  
Gregory J. Christie ◽  
Mehrdad Mansouri ◽  
Maryam Ahmadzadeh ◽  
Andrew Sixsmith ◽  
...  

Introduction: Rates of dementia are projected to increase over the coming years as global populations age. Without a treatment to slow the progression of dementia, many health policies are focusing on preventing dementia by slowing the rate of cognitive decline with age. However, it is unclear which lifestyle changes in old age meaningfully reduce the rate of cognitive decline associated with aging.Objectives: Use existing, multi-year longitudinal health data to determine if engagement in a variety of different lifestyle activities can slow the rate of cognitive decline as older adults age.Method: Data from the English Longitudinal Study of Aging was analyzed using a quasi-experimental, efficient matched-pair design inspired by the clinical trial methodology. Changes in short-term memory scores were assessed over a multi-year interval for groups who undertook one of 11 different lifestyle activities, compared to control groups matched across confounding socioeconomic and lifestyle factors.Results: Two factors, moderate-intensity physical activity and learning activities, resulted in significant positive impact on cognitive function.Conclusion: Our analysis brings cognitive benefit arguments in favor of two lifestyle activities, moderate-intensity physical activity and learning activities, while rejecting other factors advanced by the literature such as vigorous-intensity physical activity. Those findings justify and encourage the development of new lifestyle health programs by health authorities and bring forward the new health system solution, social prescribing.


Author(s):  
Amal A Wanigatunga ◽  
Hang Wang ◽  
Yang An ◽  
Eleanor M Simonsick ◽  
Qu Tian ◽  
...  

Abstract Background Larger brain volumes are often associated with more free-living physical activity (PA) in cognitively normal older adults. Yet, whether greater brain volumes are associated with more favorable (less fragmented) PA patterns, and whether this association is stronger than with total PA, remains unknown. Methods Brain magnetic resonance imaging and wrist-worn accelerometer data were collected in 301 participants (mean age = 77 [SD = 7] years, 59% women) enrolled in the Baltimore Longitudinal Study of Aging. Linear regression models were fit to examine whether brain volumes (cc) were cross-sectionally associated with: (a) total daily PA minutes and (b) activity fragmentation (mean number of PA bouts / total PA minutes × 100). Sensitivity analyses were conducted by adjusting for counterpart PA variables (eg, fragmentation covariate included in the PA minutes model). Results Greater white matter volumes in the parietal and temporal lobes were associated with higher daily PA minutes (2.6 [SE = 1.0] and 3.8 [0.9] min/day, respectively; p &lt; .009 for both) after adjusting for demographics, behavioral factors, medical conditions, gait speed, apolipoprotein E e4 status, and intracranial volume. Greater temporal white matter volume was associated with lower fragmentation (−0.16% [0.05], p = .003). In sensitivity analyses, observed associations between brain volumes and daily PA minutes remained significant while associations with fragmentation no longer remained significant. Conclusions Our results suggest white matter brain structure in cognitively normal older adults is associated with the total amount of PA and, to a lesser extent, the PA accumulation patterns. More work is needed to elucidate the longitudinal relationship between brain structure and function and PA patterns with aging.


Sign in / Sign up

Export Citation Format

Share Document