scholarly journals Estimating risk of contaminant intrusion in water distribution networks using Dempster–Shafer theory of evidence

2006 ◽  
Vol 23 (3) ◽  
pp. 129-141 ◽  
Author(s):  
Rehan Sadiq ◽  
Yehuda Kleiner ◽  
Balvant Rajani
2010 ◽  
Vol 13 (4) ◽  
pp. 596-608 ◽  
Author(s):  
Josef Bicik ◽  
Zoran Kapelan ◽  
Christos Makropoulos ◽  
Dragan A. Savić

This paper presents a decision support methodology aimed at assisting Water Distribution System (WDS) operators in the timely location of pipe bursts. This will enable them to react more systematically and promptly. The information gathered from various data sources to help locate where a pipe burst might have occurred is frequently conflicting and imperfect. The methodology developed in this paper deals effectively with such information sources. The raw data collected in the field is first processed by means of several models, namely the pipe burst prediction model, the hydraulic model and the customer contacts model. The Dempster–Shafer Theory of Evidence is then used to combine the outputs of these models with the aim of increasing the certainty of determining the location of a pipe burst within a WDS. This new methodology has been applied to several semi-real case studies. The results obtained demonstrate that the method shows potential for locating the area of a pipe burst by capturing the varying credibility of the individual models based on their historical performance.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3179
Author(s):  
Malvin S. Marlim ◽  
Doosun Kang

Contamination events in water distribution networks (WDNs) could have severe health and economic consequences. Contaminants can be deliberately or accidentally introduced into the WDN. Quick identification of the injection location and time is important in devising a mitigation plan to prevent further spread of the contaminant in the network. A method of identifying the possible intrusion point in a given network and reporting data is to use an inverse calculation by backtracking the potential path of the contaminant in the network. However, there is an element of uncertainty in the data used for calculation, particularly in water flow and sensor report time. Given the uncertainties, a method was developed in this study for fast and accurate contaminant source identification. This paper proposes a comparison filter of results by first identifying potential contaminant locations through backtracking, followed by a forward calculation to determine the injection time range, thereby reducing the potential suspects and providing likeliness comparison among the suspects. The effectiveness of the proposed method was examined by applying it to a benchmark WDN. By simulating uncertainties and filtering through the results, several possible contaminant intrusion locations and times were identified.


2020 ◽  
Vol 53 (2) ◽  
pp. 16697-16702
Author(s):  
I. Santos-Ruiz ◽  
J. Blesa ◽  
V. Puig ◽  
F.R. López-Estrada

Sign in / Sign up

Export Citation Format

Share Document